混合水泥在钢结构被动防火中的应用

IF 0.9 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
J. Šejna, S. Šulc, V. Šmilauer, Pavel Reiterman, František Wald
{"title":"混合水泥在钢结构被动防火中的应用","authors":"J. Šejna, S. Šulc, V. Šmilauer, Pavel Reiterman, František Wald","doi":"10.1108/jsfe-01-2023-0007","DOIUrl":null,"url":null,"abstract":"PurposeThe aim of this paper is to determine the thermal conductivity of a protective layer of alkali-activated cement and the possibility of performing fire protection with fireclay sand and Lightweight mortar. Unprotected steel structures have generally low fire resistance and require surface protection. The design of passive protection of a steel element must consider the service life of the structure and the possible need to replace the fire protection layer. Currently, conventional passive protection options include intumescent coatings, which are subject to frequent inspection and renewal, gypsum and cement-based fire coatings and gypsum and cement board fire protection.Design/methodology/approachAlkali-activated cements provide an alternative to traditional Portland clinker-based materials for specific areas. This paper presents the properties of hybrid cement, its manufacturability for conventional mortars and the development of passive fire protection. Fire experiments were conducted with mortar with alkali-activated and fireclay sand and lightweight mortar with alkali-activated cement and expanded perlite. Fire experiment FE modelling.FindingsThe temperatures of the protected steel and the formation of cracks in the protective layer were investigated. Based on the experiments, the thermal conductivities of the two protective layers were determined. Conclusions are presented on the applicability of alkaline-activated cement mortars and the possibilities of applicability for the protection of steel structures. The functionality of the passive fire layer was confirmed and the strengths of the mortar used were determined. The use of alkali-activated cements was shown to be a suitable option for sustainable passive fire protection of steel structures.Originality/valueEco-friendly fire protection based on hybrid alkali-activated cement of steel members.","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of hybrid cement in passive fire protection of steel structures\",\"authors\":\"J. Šejna, S. Šulc, V. Šmilauer, Pavel Reiterman, František Wald\",\"doi\":\"10.1108/jsfe-01-2023-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe aim of this paper is to determine the thermal conductivity of a protective layer of alkali-activated cement and the possibility of performing fire protection with fireclay sand and Lightweight mortar. Unprotected steel structures have generally low fire resistance and require surface protection. The design of passive protection of a steel element must consider the service life of the structure and the possible need to replace the fire protection layer. Currently, conventional passive protection options include intumescent coatings, which are subject to frequent inspection and renewal, gypsum and cement-based fire coatings and gypsum and cement board fire protection.Design/methodology/approachAlkali-activated cements provide an alternative to traditional Portland clinker-based materials for specific areas. This paper presents the properties of hybrid cement, its manufacturability for conventional mortars and the development of passive fire protection. Fire experiments were conducted with mortar with alkali-activated and fireclay sand and lightweight mortar with alkali-activated cement and expanded perlite. Fire experiment FE modelling.FindingsThe temperatures of the protected steel and the formation of cracks in the protective layer were investigated. Based on the experiments, the thermal conductivities of the two protective layers were determined. Conclusions are presented on the applicability of alkaline-activated cement mortars and the possibilities of applicability for the protection of steel structures. The functionality of the passive fire layer was confirmed and the strengths of the mortar used were determined. The use of alkali-activated cements was shown to be a suitable option for sustainable passive fire protection of steel structures.Originality/valueEco-friendly fire protection based on hybrid alkali-activated cement of steel members.\",\"PeriodicalId\":45033,\"journal\":{\"name\":\"Journal of Structural Fire Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Fire Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jsfe-01-2023-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jsfe-01-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的测定碱活性水泥保护层的导热系数,以及用粘土砂和轻质砂浆进行防火的可能性。无保护的钢结构通常具有较低的耐火性,并且需要表面保护。钢构件的被动保护设计必须考虑结构的使用寿命和更换防火层的可能需要。目前,传统的被动保护方案包括经常检查和更新的膨胀型涂料、石膏和水泥基防火涂料以及石膏和水泥板防火。设计/方法/方法碱活化水泥为特定区域提供了传统硅酸盐熟料基材料的替代品。本文介绍了混合水泥的性能、它在传统砂浆中的可制造性以及被动消防的发展。用碱活性耐火粘土砂砂浆和碱活性水泥膨胀珍珠岩轻质砂浆进行了防火试验。火灾实验有限元建模。研究了被保护钢的温度和保护层中裂纹的形成。在实验的基础上,确定了两层保护层的导热系数。对碱性活性水泥砂浆的适用性和适用于钢结构保护的可能性进行了总结。确认了被动防火层的功能,并确定了所用砂浆的强度。碱活性水泥的使用被证明是钢结构可持续被动防火的合适选择。独创性/价值基于钢构件混合碱活性水泥的环保消防。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of hybrid cement in passive fire protection of steel structures
PurposeThe aim of this paper is to determine the thermal conductivity of a protective layer of alkali-activated cement and the possibility of performing fire protection with fireclay sand and Lightweight mortar. Unprotected steel structures have generally low fire resistance and require surface protection. The design of passive protection of a steel element must consider the service life of the structure and the possible need to replace the fire protection layer. Currently, conventional passive protection options include intumescent coatings, which are subject to frequent inspection and renewal, gypsum and cement-based fire coatings and gypsum and cement board fire protection.Design/methodology/approachAlkali-activated cements provide an alternative to traditional Portland clinker-based materials for specific areas. This paper presents the properties of hybrid cement, its manufacturability for conventional mortars and the development of passive fire protection. Fire experiments were conducted with mortar with alkali-activated and fireclay sand and lightweight mortar with alkali-activated cement and expanded perlite. Fire experiment FE modelling.FindingsThe temperatures of the protected steel and the formation of cracks in the protective layer were investigated. Based on the experiments, the thermal conductivities of the two protective layers were determined. Conclusions are presented on the applicability of alkaline-activated cement mortars and the possibilities of applicability for the protection of steel structures. The functionality of the passive fire layer was confirmed and the strengths of the mortar used were determined. The use of alkali-activated cements was shown to be a suitable option for sustainable passive fire protection of steel structures.Originality/valueEco-friendly fire protection based on hybrid alkali-activated cement of steel members.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Structural Fire Engineering
Journal of Structural Fire Engineering CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
2.20
自引率
10.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信