M. Bolla, Vilas Winstein, Tao You, Frank Seidl, Fatma Abdelkhalek
{"title":"基于正则性的Fiedler地毯光谱聚类与映射","authors":"M. Bolla, Vilas Winstein, Tao You, Frank Seidl, Fatma Abdelkhalek","doi":"10.1515/spma-2022-0167","DOIUrl":null,"url":null,"abstract":"Abstract We discuss spectral clustering from a variety of perspectives that include extending techniques to rectangular arrays, considering the problem of discrepancy minimization, and applying the methods to directed graphs. Near-optimal clusters can be obtained by singular value decomposition together with the weighted kk-means algorithm. In the case of rectangular arrays, this means enhancing the method of correspondence analysis with clustering, while in the case of edge-weighted graphs, a normalized Laplacian-based clustering. In the latter case, it is proved that a spectral gap between the (k−1)\\left(k-1)st and kkth smallest positive eigenvalues of the normalized Laplacian matrix gives rise to a sudden decrease of the inner cluster variances when the number of clusters of the vertex representatives is 2k−1{2}^{k-1}, but only the first k−1k-1 eigenvectors are used in the representation. The ensemble of these eigenvectors constitute the so-called Fiedler-carpet.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"394 - 416"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity-based spectral clustering and mapping the Fiedler-carpet\",\"authors\":\"M. Bolla, Vilas Winstein, Tao You, Frank Seidl, Fatma Abdelkhalek\",\"doi\":\"10.1515/spma-2022-0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We discuss spectral clustering from a variety of perspectives that include extending techniques to rectangular arrays, considering the problem of discrepancy minimization, and applying the methods to directed graphs. Near-optimal clusters can be obtained by singular value decomposition together with the weighted kk-means algorithm. In the case of rectangular arrays, this means enhancing the method of correspondence analysis with clustering, while in the case of edge-weighted graphs, a normalized Laplacian-based clustering. In the latter case, it is proved that a spectral gap between the (k−1)\\\\left(k-1)st and kkth smallest positive eigenvalues of the normalized Laplacian matrix gives rise to a sudden decrease of the inner cluster variances when the number of clusters of the vertex representatives is 2k−1{2}^{k-1}, but only the first k−1k-1 eigenvectors are used in the representation. The ensemble of these eigenvectors constitute the so-called Fiedler-carpet.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"10 1\",\"pages\":\"394 - 416\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2022-0167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regularity-based spectral clustering and mapping the Fiedler-carpet
Abstract We discuss spectral clustering from a variety of perspectives that include extending techniques to rectangular arrays, considering the problem of discrepancy minimization, and applying the methods to directed graphs. Near-optimal clusters can be obtained by singular value decomposition together with the weighted kk-means algorithm. In the case of rectangular arrays, this means enhancing the method of correspondence analysis with clustering, while in the case of edge-weighted graphs, a normalized Laplacian-based clustering. In the latter case, it is proved that a spectral gap between the (k−1)\left(k-1)st and kkth smallest positive eigenvalues of the normalized Laplacian matrix gives rise to a sudden decrease of the inner cluster variances when the number of clusters of the vertex representatives is 2k−1{2}^{k-1}, but only the first k−1k-1 eigenvectors are used in the representation. The ensemble of these eigenvectors constitute the so-called Fiedler-carpet.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.