O’Grady六折叠上有限阶的辛双能变换

Pub Date : 2020-09-04 DOI:10.1215/21562261-10577928
Annalisa Grossi, C. Onorati, Davide Cesare Veniani
{"title":"O’Grady六折叠上有限阶的辛双能变换","authors":"Annalisa Grossi, C. Onorati, Davide Cesare Veniani","doi":"10.1215/21562261-10577928","DOIUrl":null,"url":null,"abstract":"We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville--Bogomolov--Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Symplectic birational transformations of finite order on O’Grady’s sixfolds\",\"authors\":\"Annalisa Grossi, C. Onorati, Davide Cesare Veniani\",\"doi\":\"10.1215/21562261-10577928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville--Bogomolov--Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10577928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10577928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了OG6型流形上有限阶的任何辛自同构平凡地作用于Beauville-Bogomolov-Fujiki格上,并且证明了有限阶的任意对偶变换平凡地作用在其判别群上。此外,我们对所有可能的不变和共变子格进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Symplectic birational transformations of finite order on O’Grady’s sixfolds
We prove that any symplectic automorphism of finite order on a manifold of type OG6 acts trivially on the Beauville--Bogomolov--Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信