单位球中双曲调和映射的Schwarz引理

IF 0.3 4区 数学 Q4 MATHEMATICS
Jiaolong Chen, D. Kalaj
{"title":"单位球中双曲调和映射的Schwarz引理","authors":"Jiaolong Chen, D. Kalaj","doi":"10.7146/math.scand.a-128528","DOIUrl":null,"url":null,"abstract":"Assume that $p\\in [1,\\infty ]$ and $u=P_{h}[\\phi ]$, where $\\phi \\in L^{p}(\\mathbb{S}^{n-1},\\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\\lvert u(x) \\rvert \\le G_p(\\lvert x \\rvert )\\lVert \\phi \\rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\\lVert Du(0)\\rVert \\le C_p\\lVert \\phi \\rVert \\le C_p\\lVert \\phi \\rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Schwarz lemma for hyperbolic harmonic mappings in the unit ball\",\"authors\":\"Jiaolong Chen, D. Kalaj\",\"doi\":\"10.7146/math.scand.a-128528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume that $p\\\\in [1,\\\\infty ]$ and $u=P_{h}[\\\\phi ]$, where $\\\\phi \\\\in L^{p}(\\\\mathbb{S}^{n-1},\\\\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\\\\lvert u(x) \\\\rvert \\\\le G_p(\\\\lvert x \\\\rvert )\\\\lVert \\\\phi \\\\rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\\\\lVert Du(0)\\\\rVert \\\\le C_p\\\\lVert \\\\phi \\\\rVert \\\\le C_p\\\\lVert \\\\phi \\\\rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-128528\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-128528","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

假设$p\in[1,\infty]$和$u=p_{h}[\phi]$,其中$\phi\inL^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$和$u(0)=0$。然后我们得到了某光滑函数$G_p$在$0$处消失的尖锐不等式$\lvert u(x)\rvert \le G_p(\lvert x\rvert)\lvert\phi\rvert_{L^{p}}$。此外,我们在不等式$\lVert-Du(0)\rVert\le C_p\lVert\phi\rVert\le C_p\lVert\phi\r Vert_{L^{p}}$中得到了尖锐常数$C_p$的显式形式。这两个结果推广和推广了调和映射理论(D.Kalaj,Complex Anal.Oper.theory 12(2018),545–554,定理2.1)和双曲调和理论(B.Burgeth,Manuscripta Math.77(1992),283–291,定理1)的一些已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Schwarz lemma for hyperbolic harmonic mappings in the unit ball
Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信