一般黎曼曲面上的窄俘获问题

IF 1.8 4区 数学 Q1 MATHEMATICS
M. Nursultanov, William Trad, J. Tzou, L. Tzou
{"title":"一般黎曼曲面上的窄俘获问题","authors":"M. Nursultanov, William Trad, J. Tzou, L. Tzou","doi":"10.57262/die036-1112-877","DOIUrl":null,"url":null,"abstract":"In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The narrow capture problem on general Riemannian surfaces\",\"authors\":\"M. Nursultanov, William Trad, J. Tzou, L. Tzou\",\"doi\":\"10.57262/die036-1112-877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die036-1112-877\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-1112-877","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了黎曼2流形上的窄俘获问题。这涉及到以布朗粒子为模型的表面束缚离子的平均首次通过(逗留)时间的推导。我们将层势论证与微局部分析相结合,以推导出领先阶奇点以及平均首次通过时间的O(1)项和相关的空间平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The narrow capture problem on general Riemannian surfaces
In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信