{"title":"一般黎曼曲面上的窄俘获问题","authors":"M. Nursultanov, William Trad, J. Tzou, L. Tzou","doi":"10.57262/die036-1112-877","DOIUrl":null,"url":null,"abstract":"In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The narrow capture problem on general Riemannian surfaces\",\"authors\":\"M. Nursultanov, William Trad, J. Tzou, L. Tzou\",\"doi\":\"10.57262/die036-1112-877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die036-1112-877\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-1112-877","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The narrow capture problem on general Riemannian surfaces
In this article, we study the narrow capture problem on a Riemannian 2-manifold. This involves the derivation of the mean first passage (sojourn) time of a surface-bound ion modelled as a Brownian particle. We use a layer potential argument in conjunction with microlocal analysis in order to derive the leading order singularity as well as the O(1) term of the mean first passage time and the associated spatial average.
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.