周期积分的微分零与广义超几何函数

IF 1.2 3区 数学 Q1 MATHEMATICS
Jingyue Chen, An Huang, B. Lian, S. Yau
{"title":"周期积分的微分零与广义超几何函数","authors":"Jingyue Chen, An Huang, B. Lian, S. Yau","doi":"10.4310/CNTP.2018.V12.N4.A1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the zero loci of local systems of the form $\\delta\\Pi$, where $\\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\\delta$ is a given differential operator on the space of sections $V^\\vee=\\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\\delta\\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"12 1","pages":"609-655"},"PeriodicalIF":1.2000,"publicationDate":"2017-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Differential zeros of period integrals and generalized hypergeometric functions\",\"authors\":\"Jingyue Chen, An Huang, B. Lian, S. Yau\",\"doi\":\"10.4310/CNTP.2018.V12.N4.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the zero loci of local systems of the form $\\\\delta\\\\Pi$, where $\\\\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\\\\delta$ is a given differential operator on the space of sections $V^\\\\vee=\\\\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\\\\delta\\\\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"12 1\",\"pages\":\"609-655\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2018.V12.N4.A1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2018.V12.N4.A1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了形式为$\delta\Pi$的局部系统的零轨迹,其中$\Pi$是适当的环境空间$X$中CY超曲面泛族的周期轴,$\delta$是截面空间$V^\vee=\Gamma(X,K_X^{-1})$上的一个给定微分算子。利用三位作者及其合作者的早期结果,我们对$\delta\Pi$的零轨迹给出了几种不同的描述。作为应用,我们证明了轨迹是代数的,并且在某些情况下是非空的。在某些情况下,我们还给出了一种计算轨迹多项式定义方程的显式方法。这种描述导致了零轨迹的自然分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential zeros of period integrals and generalized hypergeometric functions
In this paper, we study the zero loci of local systems of the form $\delta\Pi$, where $\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\delta$ is a given differential operator on the space of sections $V^\vee=\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\delta\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信