{"title":"周期积分的微分零与广义超几何函数","authors":"Jingyue Chen, An Huang, B. Lian, S. Yau","doi":"10.4310/CNTP.2018.V12.N4.A1","DOIUrl":null,"url":null,"abstract":"In this paper, we study the zero loci of local systems of the form $\\delta\\Pi$, where $\\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\\delta$ is a given differential operator on the space of sections $V^\\vee=\\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\\delta\\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"12 1","pages":"609-655"},"PeriodicalIF":1.2000,"publicationDate":"2017-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Differential zeros of period integrals and generalized hypergeometric functions\",\"authors\":\"Jingyue Chen, An Huang, B. Lian, S. Yau\",\"doi\":\"10.4310/CNTP.2018.V12.N4.A1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the zero loci of local systems of the form $\\\\delta\\\\Pi$, where $\\\\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\\\\delta$ is a given differential operator on the space of sections $V^\\\\vee=\\\\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\\\\delta\\\\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"12 1\",\"pages\":\"609-655\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2018.V12.N4.A1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2018.V12.N4.A1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differential zeros of period integrals and generalized hypergeometric functions
In this paper, we study the zero loci of local systems of the form $\delta\Pi$, where $\Pi$ is the period sheaf of the universal family of CY hypersurfaces in a suitable ambient space $X$, and $\delta$ is a given differential operator on the space of sections $V^\vee=\Gamma(X,K_X^{-1})$. Using earlier results of three of the authors and their collaborators, we give several different descriptions of the zero locus of $\delta\Pi$. As applications, we prove that the locus is algebraic and in some cases, non-empty. We also give an explicit way to compute the polynomial defining equations of the locus in some cases. This description gives rise to a natural stratification to the zero locus.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.