基于记录数据的幂指数危险率分布估计与预测

Q3 Business, Management and Accounting
Bahman Tarvirdizade, N. Nematollahi
{"title":"基于记录数据的幂指数危险率分布估计与预测","authors":"Bahman Tarvirdizade, N. Nematollahi","doi":"10.1080/01966324.2019.1664957","DOIUrl":null,"url":null,"abstract":"Synoptic Abstract The problems of classical and Bayesian estimation of the parameters of the power-exponential hazard rate distribution (P-EHRD) based on record values and the prediction of future record values are considered. The parameters of P-EHRD are estimated by the maximum likelihood and the least squares methods, and the Bayes estimates are obtained by the Metropolis-Hastings method under the squared error loss and LINEX loss functions. Also, an asymptotic confidence interval, two bootstrap confidence intervals and the highest posterior density (HPD) credible interval for the unknown parameters are constructed. The problem of predicting the future record values from the P-EHRD based on the past record values is considered using the maximum likelihood and Bayesian approaches. To investigate and compare the performance of the different proposed methods, a Monte Carlo simulation study is conducted. Finally, an example is presented to illustrate the estimation and prediction procedures.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"129 - 149"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1664957","citationCount":"2","resultStr":"{\"title\":\"Estimation and Prediction for the Power-Exponential Hazard Rate Distribution Based on Record Data\",\"authors\":\"Bahman Tarvirdizade, N. Nematollahi\",\"doi\":\"10.1080/01966324.2019.1664957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synoptic Abstract The problems of classical and Bayesian estimation of the parameters of the power-exponential hazard rate distribution (P-EHRD) based on record values and the prediction of future record values are considered. The parameters of P-EHRD are estimated by the maximum likelihood and the least squares methods, and the Bayes estimates are obtained by the Metropolis-Hastings method under the squared error loss and LINEX loss functions. Also, an asymptotic confidence interval, two bootstrap confidence intervals and the highest posterior density (HPD) credible interval for the unknown parameters are constructed. The problem of predicting the future record values from the P-EHRD based on the past record values is considered using the maximum likelihood and Bayesian approaches. To investigate and compare the performance of the different proposed methods, a Monte Carlo simulation study is conducted. Finally, an example is presented to illustrate the estimation and prediction procedures.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"39 1\",\"pages\":\"129 - 149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2019.1664957\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2019.1664957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1664957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

摘要

摘要考虑了基于记录值的幂指数危险率分布(P-EHRD)参数的经典和贝叶斯估计以及未来记录值的预测问题。P-EHRD的参数由最大似然法和最小二乘法估计,Bayes估计由Metropolis Hastings法在平方误差损失和LINEX损失函数下获得。此外,还构造了未知参数的渐近置信区间、两个bootstrap置信区间和最高后验密度(HPD)置信区间。使用最大似然和贝叶斯方法来考虑基于过去记录值从P-EHRD预测未来记录值的问题。为了研究和比较所提出的不同方法的性能,进行了蒙特卡洛模拟研究。最后,给出了一个例子来说明估计和预测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Prediction for the Power-Exponential Hazard Rate Distribution Based on Record Data
Synoptic Abstract The problems of classical and Bayesian estimation of the parameters of the power-exponential hazard rate distribution (P-EHRD) based on record values and the prediction of future record values are considered. The parameters of P-EHRD are estimated by the maximum likelihood and the least squares methods, and the Bayes estimates are obtained by the Metropolis-Hastings method under the squared error loss and LINEX loss functions. Also, an asymptotic confidence interval, two bootstrap confidence intervals and the highest posterior density (HPD) credible interval for the unknown parameters are constructed. The problem of predicting the future record values from the P-EHRD based on the past record values is considered using the maximum likelihood and Bayesian approaches. To investigate and compare the performance of the different proposed methods, a Monte Carlo simulation study is conducted. Finally, an example is presented to illustrate the estimation and prediction procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信