基于计算流体动力学(CFD)的高空长航时无人机螺旋桨设计改进

IF 0.8 Q4 ROBOTICS
Fatwa Azam Maulana, E. Amalia, M. A. Moelyadi
{"title":"基于计算流体动力学(CFD)的高空长航时无人机螺旋桨设计改进","authors":"Fatwa Azam Maulana, E. Amalia, M. A. Moelyadi","doi":"10.1108/ijius-07-2021-0078","DOIUrl":null,"url":null,"abstract":"PurposeHigh Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) driven by a hybrid power between battery and solar panel have attracted many researchers. The HALE UAV which develops at Bandung Institute of Technology has design requirements of a 63 kg MTOW with a cruise velocity of 22.1 m/s at an altitude of 60,000 ft propelled by two propellers. The main problems that arise with the propellers gained from the market are these propellers cannot operate properly at the cruise phase due to inadequate thrust and high drag value. This paper aims to design a propeller that solves those problems.Design/methodology/approachThe Larrabee method is used to design this propeller geometry with an output in the form of a chord and twist distribution. The CFD approach method is used to improve the design resulting from the Larrabee method.FindingsThis study shows that the inputted thrust value of the propeller designed using the Larrabee method is always higher than the thrust value resulting from the CFD simulation with a difference of around 20% so a design improvement process using CFD is required.Originality/valueThe analysis of propeller implementation in various mission profiles shows that this propeller can operate fully from climbing at sea level to cruising flight at an altitude of 60,000 ft. The same procedure can be applied in other HALE UAV cases to generate a propeller design with different objectives.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational fluid dynamics (CFD) based propeller design improvement for high altitude long endurance (HALE) UAV\",\"authors\":\"Fatwa Azam Maulana, E. Amalia, M. A. Moelyadi\",\"doi\":\"10.1108/ijius-07-2021-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeHigh Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) driven by a hybrid power between battery and solar panel have attracted many researchers. The HALE UAV which develops at Bandung Institute of Technology has design requirements of a 63 kg MTOW with a cruise velocity of 22.1 m/s at an altitude of 60,000 ft propelled by two propellers. The main problems that arise with the propellers gained from the market are these propellers cannot operate properly at the cruise phase due to inadequate thrust and high drag value. This paper aims to design a propeller that solves those problems.Design/methodology/approachThe Larrabee method is used to design this propeller geometry with an output in the form of a chord and twist distribution. The CFD approach method is used to improve the design resulting from the Larrabee method.FindingsThis study shows that the inputted thrust value of the propeller designed using the Larrabee method is always higher than the thrust value resulting from the CFD simulation with a difference of around 20% so a design improvement process using CFD is required.Originality/valueThe analysis of propeller implementation in various mission profiles shows that this propeller can operate fully from climbing at sea level to cruising flight at an altitude of 60,000 ft. The same procedure can be applied in other HALE UAV cases to generate a propeller design with different objectives.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-07-2021-0078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-07-2021-0078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

目的电池和太阳能电池板混合动力驱动的高空长航时无人机吸引了许多研究人员。万隆理工学院开发的HALE无人机的设计要求是,在60000英尺的高度上,由两个螺旋桨推进,最大起飞重量为63公斤,巡航速度为22.1米/秒。从市场上获得的螺旋桨出现的主要问题是,由于推力不足和阻力值高,这些螺旋桨无法在巡航阶段正常运行。本文旨在设计一种解决这些问题的螺旋桨。设计/方法/方法Larrabee方法用于设计螺旋桨几何结构,输出为弦和扭曲分布。CFD方法用于改进Larrabee方法的设计。发现这项研究表明,使用Larrabee方法设计的螺旋桨的输入推力值总是高于CFD模拟产生的推力值,相差约20%,因此需要使用CFD进行设计改进。独创性/价值对各种任务剖面中螺旋桨执行情况的分析表明,这种螺旋桨可以从海平面爬升到60000英尺高度的巡航飞行完全运行。同样的程序可以应用于其他HALE无人机案例,以生成具有不同目标的螺旋桨设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational fluid dynamics (CFD) based propeller design improvement for high altitude long endurance (HALE) UAV
PurposeHigh Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV) driven by a hybrid power between battery and solar panel have attracted many researchers. The HALE UAV which develops at Bandung Institute of Technology has design requirements of a 63 kg MTOW with a cruise velocity of 22.1 m/s at an altitude of 60,000 ft propelled by two propellers. The main problems that arise with the propellers gained from the market are these propellers cannot operate properly at the cruise phase due to inadequate thrust and high drag value. This paper aims to design a propeller that solves those problems.Design/methodology/approachThe Larrabee method is used to design this propeller geometry with an output in the form of a chord and twist distribution. The CFD approach method is used to improve the design resulting from the Larrabee method.FindingsThis study shows that the inputted thrust value of the propeller designed using the Larrabee method is always higher than the thrust value resulting from the CFD simulation with a difference of around 20% so a design improvement process using CFD is required.Originality/valueThe analysis of propeller implementation in various mission profiles shows that this propeller can operate fully from climbing at sea level to cruising flight at an altitude of 60,000 ft. The same procedure can be applied in other HALE UAV cases to generate a propeller design with different objectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信