{"title":"使用深度学习和数理统计模型预测区域碳排放","authors":"Yutao Mu, Kai Gao, Ronghua Du","doi":"10.3233/ais-220163","DOIUrl":null,"url":null,"abstract":"Detecting carbon emissions is the key to carbon peaking and carbon neutrality goals. Existing research has focused on utilizing data-driven method to study carbon emissions off a single object. This study proposes a regional carbon emissions prediction method. The area objects are divided into dynamic objects for vehicles and static objects for buildings. For the dynamic object, carbon emissions is modeled using the vehicle location provided by the BeiDou satellite navigation system (BDS). For the static object, the neural network R3det (rotation remote sensing target detection) is used to identify the buildings in remote sensing images, and then the trained ARIMA time series model is used to predict the carbon emissions. The model is tested in an industrial park in Tangshan, Hebei Province in China. The result of the regional three-dimensional emission map shows that the method provided a novel and feasible idea for carbon emissions prediction.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of regional carbon emissions using deep learning and mathematical–statistical model\",\"authors\":\"Yutao Mu, Kai Gao, Ronghua Du\",\"doi\":\"10.3233/ais-220163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting carbon emissions is the key to carbon peaking and carbon neutrality goals. Existing research has focused on utilizing data-driven method to study carbon emissions off a single object. This study proposes a regional carbon emissions prediction method. The area objects are divided into dynamic objects for vehicles and static objects for buildings. For the dynamic object, carbon emissions is modeled using the vehicle location provided by the BeiDou satellite navigation system (BDS). For the static object, the neural network R3det (rotation remote sensing target detection) is used to identify the buildings in remote sensing images, and then the trained ARIMA time series model is used to predict the carbon emissions. The model is tested in an industrial park in Tangshan, Hebei Province in China. The result of the regional three-dimensional emission map shows that the method provided a novel and feasible idea for carbon emissions prediction.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220163\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220163","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Prediction of regional carbon emissions using deep learning and mathematical–statistical model
Detecting carbon emissions is the key to carbon peaking and carbon neutrality goals. Existing research has focused on utilizing data-driven method to study carbon emissions off a single object. This study proposes a regional carbon emissions prediction method. The area objects are divided into dynamic objects for vehicles and static objects for buildings. For the dynamic object, carbon emissions is modeled using the vehicle location provided by the BeiDou satellite navigation system (BDS). For the static object, the neural network R3det (rotation remote sensing target detection) is used to identify the buildings in remote sensing images, and then the trained ARIMA time series model is used to predict the carbon emissions. The model is tested in an industrial park in Tangshan, Hebei Province in China. The result of the regional three-dimensional emission map shows that the method provided a novel and feasible idea for carbon emissions prediction.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.