伯努利试验成功运行概率的近似

IF 0.4 Q4 STATISTICS & PROBABILITY
S. Kaczkowski
{"title":"伯努利试验成功运行概率的近似","authors":"S. Kaczkowski","doi":"10.1090/tpms/1186","DOIUrl":null,"url":null,"abstract":"Concise and convenient bounds are obtained for the probability mass and cumulative distribution functions associated with the first success run of length \n\n \n k\n k\n \n\n in a sequence of \n\n \n n\n n\n \n\n Bernoulli trials. Results are compared to an approximation obtained by the Stein–Chen method as well as to bounds obtained from statistical reliability theory. These approximation formulas are used to obtain precise estimates of the expectation value associated with the occurrence of at least one success run of length \n\n \n k\n k\n \n\n within \n\n \n N\n N\n \n\n concurrent sequences of Bernoulli trials.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximations for success run probabilities in Bernoulli trials\",\"authors\":\"S. Kaczkowski\",\"doi\":\"10.1090/tpms/1186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concise and convenient bounds are obtained for the probability mass and cumulative distribution functions associated with the first success run of length \\n\\n \\n k\\n k\\n \\n\\n in a sequence of \\n\\n \\n n\\n n\\n \\n\\n Bernoulli trials. Results are compared to an approximation obtained by the Stein–Chen method as well as to bounds obtained from statistical reliability theory. These approximation formulas are used to obtain precise estimates of the expectation value associated with the occurrence of at least one success run of length \\n\\n \\n k\\n k\\n \\n\\n within \\n\\n \\n N\\n N\\n \\n\\n concurrent sequences of Bernoulli trials.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在一系列n个伯努利试验中,获得了与长度为k k的第一次成功游程相关的概率质量和累积分布函数的简明和方便的边界。将结果与Stein–Chen方法获得的近似值以及统计可靠性理论获得的边界进行比较。这些近似公式用于获得期望值的精确估计,该期望值与伯努利试验的N个并发序列中至少一个长度为k k的成功游程的发生有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations for success run probabilities in Bernoulli trials
Concise and convenient bounds are obtained for the probability mass and cumulative distribution functions associated with the first success run of length k k in a sequence of n n Bernoulli trials. Results are compared to an approximation obtained by the Stein–Chen method as well as to bounds obtained from statistical reliability theory. These approximation formulas are used to obtain precise estimates of the expectation value associated with the occurrence of at least one success run of length k k within N N concurrent sequences of Bernoulli trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信