当泛分离图$C^*$-代数是精确的

IF 0.2 Q4 MATHEMATICS
B. Duncan
{"title":"当泛分离图$C^*$-代数是精确的","authors":"B. Duncan","doi":"10.31392/mfat-npu26_2.2020.05","DOIUrl":null,"url":null,"abstract":"We consider when the universal C∗-algebras associated to separated graphs are exact. Specifically, for finite separated graphs we show that the universal C∗-algebra is exact if and only if the C∗-algebra is isomorphic to a graph C∗-algebra which occurs precisely when the universal and reduced C∗-algebras of the separated graph are isomorphic.","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"26 1","pages":"126-140"},"PeriodicalIF":0.2000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When universal separated graph $C^*$-algebras are exact\",\"authors\":\"B. Duncan\",\"doi\":\"10.31392/mfat-npu26_2.2020.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider when the universal C∗-algebras associated to separated graphs are exact. Specifically, for finite separated graphs we show that the universal C∗-algebra is exact if and only if the C∗-algebra is isomorphic to a graph C∗-algebra which occurs precisely when the universal and reduced C∗-algebras of the separated graph are isomorphic.\",\"PeriodicalId\":44325,\"journal\":{\"name\":\"Methods of Functional Analysis and Topology\",\"volume\":\"26 1\",\"pages\":\"126-140\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Functional Analysis and Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31392/mfat-npu26_2.2020.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_2.2020.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑与分离图相关的泛C * -代数何时是精确的。具体地说,对于有限分离图,我们证明了泛C∗-代数是精确的当且仅当C∗-代数与图C∗-代数同构,而图C∗-代数恰好在分离图的泛C∗-代数同构时出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When universal separated graph $C^*$-algebras are exact
We consider when the universal C∗-algebras associated to separated graphs are exact. Specifically, for finite separated graphs we show that the universal C∗-algebra is exact if and only if the C∗-algebra is isomorphic to a graph C∗-algebra which occurs precisely when the universal and reduced C∗-algebras of the separated graph are isomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信