概率赋范空间中广义差分序列的渐近无域微统计等价

IF 0.4 Q4 MATHEMATICS
R. Haloi, M. Sen, B. Tripathy
{"title":"概率赋范空间中广义差分序列的渐近无域微统计等价","authors":"R. Haloi, M. Sen, B. Tripathy","doi":"10.5269/bspm.51915","DOIUrl":null,"url":null,"abstract":"The current article introduces the notion of asymptotically lacunary $(\\Delta^n,\\mu)$-statistical equivalent sequence in the settings of a probabilistic norm $N$. Furthermore, the article presents the concepts of asymptotically $(\\Delta^n,\\mu)$-strongly Ces\\'{a}ro equivalent sequences and asymptotically $(\\Delta^n,\\mu)$-strongly Ces\\'{a}ro Orlicz equivalent sequences in the theory of probabilistic normed spaces and also investigates their various properties including some inclusion relations as well as some equivalent conditions in this new settings.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically lacunary µ-statistical equivalence of generalized difference sequences in probabilistic normed spaces\",\"authors\":\"R. Haloi, M. Sen, B. Tripathy\",\"doi\":\"10.5269/bspm.51915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current article introduces the notion of asymptotically lacunary $(\\\\Delta^n,\\\\mu)$-statistical equivalent sequence in the settings of a probabilistic norm $N$. Furthermore, the article presents the concepts of asymptotically $(\\\\Delta^n,\\\\mu)$-strongly Ces\\\\'{a}ro equivalent sequences and asymptotically $(\\\\Delta^n,\\\\mu)$-strongly Ces\\\\'{a}ro Orlicz equivalent sequences in the theory of probabilistic normed spaces and also investigates their various properties including some inclusion relations as well as some equivalent conditions in this new settings.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在概率范数$N$的设置下,引入渐近无隙$(\Delta^n,\mu)$ -统计等价序列的概念。在此基础上,提出了概率赋范空间理论中渐近$(\Delta^n,\mu)$ -强Cesáro等价序列和渐近$(\Delta^n,\mu)$ -强Cesáro Orlicz等价序列的概念,并研究了它们的各种性质,包括在这种新环境下的一些包含关系和一些等价条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically lacunary µ-statistical equivalence of generalized difference sequences in probabilistic normed spaces
The current article introduces the notion of asymptotically lacunary $(\Delta^n,\mu)$-statistical equivalent sequence in the settings of a probabilistic norm $N$. Furthermore, the article presents the concepts of asymptotically $(\Delta^n,\mu)$-strongly Ces\'{a}ro equivalent sequences and asymptotically $(\Delta^n,\mu)$-strongly Ces\'{a}ro Orlicz equivalent sequences in the theory of probabilistic normed spaces and also investigates their various properties including some inclusion relations as well as some equivalent conditions in this new settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信