Anti-quasi-Sasakian manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Di Pinto, G. Dileo
{"title":"Anti-quasi-Sasakian manifolds","authors":"D. Di Pinto,&nbsp;G. Dileo","doi":"10.1007/s10455-023-09907-y","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely Kähler almost contact metric manifolds <span>\\((M,\\varphi , \\xi ,\\eta ,g)\\)</span>, quasi-Sasakian and anti-quasi-Sasakian manifolds are characterized, respectively, by the <span>\\(\\varphi \\)</span>-invariance and the <span>\\(\\varphi \\)</span>-anti-invariance of the 2-form <span>\\(\\textrm{d}\\eta \\)</span>. A Boothby–Wang type theorem allows to obtain aqS structures on principal circle bundles over Kähler manifolds endowed with a closed (2, 0)-form. We characterize aqS manifolds with constant <span>\\(\\xi \\)</span>-sectional curvature equal to 1: they admit an <span>\\(Sp(n)\\times 1\\)</span>-reduction of the frame bundle such that the manifold is transversely hyperkähler, carrying a second aqS structure and a null Sasakian <span>\\(\\eta \\)</span>-Einstein structure. We show that aqS manifolds with constant sectional curvature are necessarily flat and cokähler. Finally, by using a metric connection with torsion, we provide a sufficient condition for an aqS manifold to be locally decomposable as the Riemannian product of a Kähler manifold and an aqS manifold with structure of maximal rank. Under the same hypothesis, (<i>M</i>, <i>g</i>) cannot be locally symmetric.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"64 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09907-y.pdf","citationCount":"2","resultStr":"{\"title\":\"Anti-quasi-Sasakian manifolds\",\"authors\":\"D. Di Pinto,&nbsp;G. Dileo\",\"doi\":\"10.1007/s10455-023-09907-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely Kähler almost contact metric manifolds <span>\\\\((M,\\\\varphi , \\\\xi ,\\\\eta ,g)\\\\)</span>, quasi-Sasakian and anti-quasi-Sasakian manifolds are characterized, respectively, by the <span>\\\\(\\\\varphi \\\\)</span>-invariance and the <span>\\\\(\\\\varphi \\\\)</span>-anti-invariance of the 2-form <span>\\\\(\\\\textrm{d}\\\\eta \\\\)</span>. A Boothby–Wang type theorem allows to obtain aqS structures on principal circle bundles over Kähler manifolds endowed with a closed (2, 0)-form. We characterize aqS manifolds with constant <span>\\\\(\\\\xi \\\\)</span>-sectional curvature equal to 1: they admit an <span>\\\\(Sp(n)\\\\times 1\\\\)</span>-reduction of the frame bundle such that the manifold is transversely hyperkähler, carrying a second aqS structure and a null Sasakian <span>\\\\(\\\\eta \\\\)</span>-Einstein structure. We show that aqS manifolds with constant sectional curvature are necessarily flat and cokähler. Finally, by using a metric connection with torsion, we provide a sufficient condition for an aqS manifold to be locally decomposable as the Riemannian product of a Kähler manifold and an aqS manifold with structure of maximal rank. Under the same hypothesis, (<i>M</i>, <i>g</i>) cannot be locally symmetric.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09907-y.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09907-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09907-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们引入并研究了一类特殊的几乎接触度量流形,称之为反拟Sasakian(aqS)。在一类横向Kähler几乎接触度量流形\((M,\varphi,\neneneba xi,\eta,g)\)中,准Sasakian和反准Sasakian流形分别通过2-形式\(\textrm{d}\eta\)的\(\varphi\)-不变性和\(\varphi\)反不变性来表征。Boothby–Wang型定理允许在具有闭(2,0)形式的Kähler流形上获得主圆丛上的aqS结构。我们描述了具有常数\(\neneneba xi \)-截面曲率等于1的aqS流形:它们允许框架丛的\(Sp(n)\times 1\)-归约,使得该流形是横向超kähler,带有第二个aqS结构和零Sasakian \(\eta\)-Einstein结构。我们证明了具有恒定截面曲率的aqS流形必然是平坦的和cokähler的。最后,通过使用带扭的度量连接,我们提供了一个aqS流形可局部分解为Kähler流形和具有最大秩结构的aqS流形的黎曼乘积的充分条件。在相同的假设下,(M,g)不可能是局部对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anti-quasi-Sasakian manifolds

Anti-quasi-Sasakian manifolds

We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely Kähler almost contact metric manifolds \((M,\varphi , \xi ,\eta ,g)\), quasi-Sasakian and anti-quasi-Sasakian manifolds are characterized, respectively, by the \(\varphi \)-invariance and the \(\varphi \)-anti-invariance of the 2-form \(\textrm{d}\eta \). A Boothby–Wang type theorem allows to obtain aqS structures on principal circle bundles over Kähler manifolds endowed with a closed (2, 0)-form. We characterize aqS manifolds with constant \(\xi \)-sectional curvature equal to 1: they admit an \(Sp(n)\times 1\)-reduction of the frame bundle such that the manifold is transversely hyperkähler, carrying a second aqS structure and a null Sasakian \(\eta \)-Einstein structure. We show that aqS manifolds with constant sectional curvature are necessarily flat and cokähler. Finally, by using a metric connection with torsion, we provide a sufficient condition for an aqS manifold to be locally decomposable as the Riemannian product of a Kähler manifold and an aqS manifold with structure of maximal rank. Under the same hypothesis, (Mg) cannot be locally symmetric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信