硅催化裂化电池热力学函数随温度变化的分子动力学研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Bari, S. Rubaiee, Anas Ahmed, A. Masud
{"title":"硅催化裂化电池热力学函数随温度变化的分子动力学研究","authors":"A. Bari, S. Rubaiee, Anas Ahmed, A. Masud","doi":"10.3329/JNAME.V14I2.30128","DOIUrl":null,"url":null,"abstract":"In modern days silicon is being extensively used in making electronic semiconductor-based chips and IC’s. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon’ thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation “Accelrys Materials Studio” (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.30128","citationCount":"0","resultStr":"{\"title\":\"A molecular dynamic study of change in thermodynamic functions of silicon FCC cell with the change in temperature\",\"authors\":\"A. Bari, S. Rubaiee, Anas Ahmed, A. Masud\",\"doi\":\"10.3329/JNAME.V14I2.30128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern days silicon is being extensively used in making electronic semiconductor-based chips and IC’s. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon’ thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation “Accelrys Materials Studio” (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.30128\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V14I2.30128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I2.30128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在现代,硅被广泛用于制造电子半导体芯片和集成电路。本研究采用分子动力学(MD)模拟方法,研究了恒压下硅的晶格热容、摩尔焓和德拜温度等不同热力学性质随温度变化的变化规律。了解硅的热力学功能是非常重要的,因为现在许多电子公司都在努力减少半导体芯片产生的热量,因为芯片的过度加热不仅会使设备迅速升温,而且会缩短芯片的寿命。仿真结果有助于工程师更有效地设计电子芯片。模拟“Accelrys Materials Studio”(5.0版)软件已被使用。对硅FCC金刚石结构电池进行了仿真。模拟中使用的分析工具被称为CASTEP(剑桥顺序总能量包)。该工具是专门用于执行分子水平热力学分析,以生成数据和图表的变化,在不同的温度依赖的性质的分子系统。硅原子间的相互作用用Kohn-Sham势表示,并对0 ~ 1000 K温度下硅的晶态进行了MD计算。本文采用密度函数理论(DFT)来推导状态关系的密度。将仿真结果与已发表的实验值进行了比较,发现仿真结果与实验值接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A molecular dynamic study of change in thermodynamic functions of silicon FCC cell with the change in temperature
In modern days silicon is being extensively used in making electronic semiconductor-based chips and IC’s. In this research, the change in different thermodynamic properties of silicon like lattice heat capacity, molar enthalpy and Debye temperature at constant pressure, with the change in temperature, has been investigated by using molecular dynamics (MD) simulation method. Knowing silicon’ thermodynamic functions are quite important, because many electronic companies are nowadays trying a lot to reduce the heat generated by their semiconductor chips as excessive heating of the chip not only warms up the device quickly but also reduces the chip life. The results obtained from this simulation help engineers to design electronic chips more efficiently. For simulation “Accelrys Materials Studio” (Version 5.0) software has been used. The simulation was run for silicon FCC diamond structured cell. The analysis tool used in the simulation is known as CASTEP (Cambridge Sequential Total Energy Package). This tool is specialized for performing molecular level thermodynamic analysis to generate data and graphs for the change in different temperature dependent properties of the molecular system. The interaction between silicon atoms was expressed by the Kohn-Sham potential and MD calculation was conducted on crystalline state of silicon at temperatures between 0 and 1000 K. Here, density function theory (DFT) based tool has been used to derive density of state relations. Results obtained by the simulation were compared with published experimental values and it was found that the simulation results were close to the experimental values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信