一类分数阶导数非线性抛物型问题弱解的存在性

IF 2 Q1 MATHEMATICS
R. A. Sánchez-Ancajima, L. J. Caucha
{"title":"一类分数阶导数非线性抛物型问题弱解的存在性","authors":"R. A. Sánchez-Ancajima, L. J. Caucha","doi":"10.22436/jmcs.030.03.04","DOIUrl":null,"url":null,"abstract":"The main objective of this work is to demostrate the existence and unique of weak solution for a nonlinear parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the Nehari Manifold method and its relationship with the Fibering Maps, the existence of a weak solution for the stationary case was demostrated. Finally, using the Arzela-Ascoli Theorem and Banach’s Fixed Point Theorem, the existence and uniqueness of a weak solution for the non-linear parabolic problem were shown.","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a weak solution for a nonlinear parabolic problem with fractional derivates\",\"authors\":\"R. A. Sánchez-Ancajima, L. J. Caucha\",\"doi\":\"10.22436/jmcs.030.03.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this work is to demostrate the existence and unique of weak solution for a nonlinear parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the Nehari Manifold method and its relationship with the Fibering Maps, the existence of a weak solution for the stationary case was demostrated. Finally, using the Arzela-Ascoli Theorem and Banach’s Fixed Point Theorem, the existence and uniqueness of a weak solution for the non-linear parabolic problem were shown.\",\"PeriodicalId\":45497,\"journal\":{\"name\":\"Journal of Mathematics and Computer Science-JMCS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Computer Science-JMCS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jmcs.030.03.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.030.03.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是证明一维域上一个具有分数阶导数的非线性抛物型问题弱解的存在性和唯一性。利用Nehari流形方法及其与Fibering映射的关系,证明了平稳情形弱解的存在性。最后,利用Arzela-Ascoli定理和Banach不动点定理,证明了非线性抛物型问题弱解的存在性和唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of a weak solution for a nonlinear parabolic problem with fractional derivates
The main objective of this work is to demostrate the existence and unique of weak solution for a nonlinear parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the Nehari Manifold method and its relationship with the Fibering Maps, the existence of a weak solution for the stationary case was demostrated. Finally, using the Arzela-Ascoli Theorem and Banach’s Fixed Point Theorem, the existence and uniqueness of a weak solution for the non-linear parabolic problem were shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信