天然橡胶/木材复合泡沫:建筑用隔热和隔音材料

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS
Laura Neves de Alencar, Fábio Friol Guedes Paiva, F. Okimoto, G. Bacarin, Guilherme Dognani, L. O. Salmazo, R. J. dos Santos, F. Cabrera, A. Job
{"title":"天然橡胶/木材复合泡沫:建筑用隔热和隔音材料","authors":"Laura Neves de Alencar, Fábio Friol Guedes Paiva, F. Okimoto, G. Bacarin, Guilherme Dognani, L. O. Salmazo, R. J. dos Santos, F. Cabrera, A. Job","doi":"10.1177/02624893231151364","DOIUrl":null,"url":null,"abstract":"With the advances in the field of civil construction and the world population growth, the development of policies is necessary for the management and reuse of generated residue. Thus, the present work proposes the use of expanded natural rubber as a polymeric matrix incorporated with eucalyptus filler as a reinforcing filler for the production of composites. Thermal insulation capacity was determined by the transient plane source and acoustic method by impedance tube. NR/W40 foam showed enhanced the acoustic insulation capacity. The maximum absorption of NR/W40 was 0.83, at 3257 Hz, which is three times higher than natural rubber foam. Highly inhomogeneous cell structures were observed with large, interconnected pores, improving the acoustic performance. Sound absorption coefficient for natural rubber foam with 40% wood (0.83 ± 0.046) was similar to PU foam (0.97 ± 0.009) with 20 mm in thickness, a density of 47 kg/m3 and 98% open cell content it is a well-known acoustic absorbent in the building sector. The NR/W40 sample recorded the best acoustic performance among the NR foams analyzed in this work, maintaining good sound absorption above 1500 Hz, demonstrating a possibility of wood reuse as a filler in based-rubber foam for acustic insulation.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural rubber/wood composite foam: Thermal insulation and acoustic isolation materials for construction\",\"authors\":\"Laura Neves de Alencar, Fábio Friol Guedes Paiva, F. Okimoto, G. Bacarin, Guilherme Dognani, L. O. Salmazo, R. J. dos Santos, F. Cabrera, A. Job\",\"doi\":\"10.1177/02624893231151364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advances in the field of civil construction and the world population growth, the development of policies is necessary for the management and reuse of generated residue. Thus, the present work proposes the use of expanded natural rubber as a polymeric matrix incorporated with eucalyptus filler as a reinforcing filler for the production of composites. Thermal insulation capacity was determined by the transient plane source and acoustic method by impedance tube. NR/W40 foam showed enhanced the acoustic insulation capacity. The maximum absorption of NR/W40 was 0.83, at 3257 Hz, which is three times higher than natural rubber foam. Highly inhomogeneous cell structures were observed with large, interconnected pores, improving the acoustic performance. Sound absorption coefficient for natural rubber foam with 40% wood (0.83 ± 0.046) was similar to PU foam (0.97 ± 0.009) with 20 mm in thickness, a density of 47 kg/m3 and 98% open cell content it is a well-known acoustic absorbent in the building sector. The NR/W40 sample recorded the best acoustic performance among the NR foams analyzed in this work, maintaining good sound absorption above 1500 Hz, demonstrating a possibility of wood reuse as a filler in based-rubber foam for acustic insulation.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893231151364\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893231151364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

随着民用建筑领域的发展和世界人口的增长,有必要制定相应的政策来管理和再利用产生的残留物。因此,目前的工作建议使用膨胀天然橡胶作为聚合物基质,结合桉树填料作为复合材料生产的增强填料。采用瞬态面源法和阻抗管声学法测定保温能力。NR/W40泡沫具有较强的隔声能力。在3257 Hz时,NR/W40的最大吸光度为0.83,是天然橡胶泡沫的3倍。观察到高度不均匀的细胞结构,具有大的,相互连接的孔隙,提高了声学性能。含40%木材的天然橡胶泡沫吸声系数(0.83±0.046)与厚度为20 mm、密度为47 kg/m3、开孔含量为98%的PU泡沫吸声系数(0.97±0.009)相似,是建筑领域知名的吸声材料。NR/W40样品在本研究分析的NR泡沫中记录了最佳的声学性能,在1500 Hz以上保持良好的吸声性能,这表明木材可以作为基橡胶泡沫中的隔声填料重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural rubber/wood composite foam: Thermal insulation and acoustic isolation materials for construction
With the advances in the field of civil construction and the world population growth, the development of policies is necessary for the management and reuse of generated residue. Thus, the present work proposes the use of expanded natural rubber as a polymeric matrix incorporated with eucalyptus filler as a reinforcing filler for the production of composites. Thermal insulation capacity was determined by the transient plane source and acoustic method by impedance tube. NR/W40 foam showed enhanced the acoustic insulation capacity. The maximum absorption of NR/W40 was 0.83, at 3257 Hz, which is three times higher than natural rubber foam. Highly inhomogeneous cell structures were observed with large, interconnected pores, improving the acoustic performance. Sound absorption coefficient for natural rubber foam with 40% wood (0.83 ± 0.046) was similar to PU foam (0.97 ± 0.009) with 20 mm in thickness, a density of 47 kg/m3 and 98% open cell content it is a well-known acoustic absorbent in the building sector. The NR/W40 sample recorded the best acoustic performance among the NR foams analyzed in this work, maintaining good sound absorption above 1500 Hz, demonstrating a possibility of wood reuse as a filler in based-rubber foam for acustic insulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信