{"title":"非平凡拓扑域上涉及分数阶拉普拉斯算子的Bahri-Coron问题的多重解","authors":"Uttam Kumar, Sweta Tiwari","doi":"10.12775/tmna.2022.033","DOIUrl":null,"url":null,"abstract":"In this article, we establish the existence of positive and multiple\n sign-changing solutions to the fractional $p$-Laplacian equation with purely critical nonlinearity\n \\begin{equation}\n\\label{Ppomegas-a}\\tag{P$_{p,\\Omega}^{s}$}\n\\begin{cases}\n (-\\Delta)_{p}^s u =|u|^{p_s^*-2} u& \\text{in }\\Omega, \\\\\n u =0 & \\text{on }\\Omega^{c},\n \\end{cases}\n\\end{equation}\nin a bounded domain $\\Omega\\subset \\mathbb{R}^{N}$ for $s\\in (0,1)$,\n$p\\in (1,\\infty)$, and the fractional critical Sobolev exponent\n$p^{*}_{s}={Np}/({N-sp})$ under some symmetry assumptions.\nWe study Struwe's type global compactness results for the Palais-Smale sequence\nin the presence of symmetries.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology\",\"authors\":\"Uttam Kumar, Sweta Tiwari\",\"doi\":\"10.12775/tmna.2022.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish the existence of positive and multiple\\n sign-changing solutions to the fractional $p$-Laplacian equation with purely critical nonlinearity\\n \\\\begin{equation}\\n\\\\label{Ppomegas-a}\\\\tag{P$_{p,\\\\Omega}^{s}$}\\n\\\\begin{cases}\\n (-\\\\Delta)_{p}^s u =|u|^{p_s^*-2} u& \\\\text{in }\\\\Omega, \\\\\\\\\\n u =0 & \\\\text{on }\\\\Omega^{c},\\n \\\\end{cases}\\n\\\\end{equation}\\nin a bounded domain $\\\\Omega\\\\subset \\\\mathbb{R}^{N}$ for $s\\\\in (0,1)$,\\n$p\\\\in (1,\\\\infty)$, and the fractional critical Sobolev exponent\\n$p^{*}_{s}={Np}/({N-sp})$ under some symmetry assumptions.\\nWe study Struwe's type global compactness results for the Palais-Smale sequence\\nin the presence of symmetries.\",\"PeriodicalId\":23130,\"journal\":{\"name\":\"Topological Methods in Nonlinear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Methods in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology
In this article, we establish the existence of positive and multiple
sign-changing solutions to the fractional $p$-Laplacian equation with purely critical nonlinearity
\begin{equation}
\label{Ppomegas-a}\tag{P$_{p,\Omega}^{s}$}
\begin{cases}
(-\Delta)_{p}^s u =|u|^{p_s^*-2} u& \text{in }\Omega, \\
u =0 & \text{on }\Omega^{c},
\end{cases}
\end{equation}
in a bounded domain $\Omega\subset \mathbb{R}^{N}$ for $s\in (0,1)$,
$p\in (1,\infty)$, and the fractional critical Sobolev exponent
$p^{*}_{s}={Np}/({N-sp})$ under some symmetry assumptions.
We study Struwe's type global compactness results for the Palais-Smale sequence
in the presence of symmetries.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.