{"title":"雷击火灾下多物种抽象森林生态系统模拟研究","authors":"O. Zhi, Shiying Wang, Nisuo Du","doi":"10.3390/fire6080308","DOIUrl":null,"url":null,"abstract":"There is a complex interaction between lightning-caused fire behavior and the flora and fauna of the forest, which involves the influence of a large number of ecological factors. However, more comprehensive simulation studies under multi-system interactions between lightning ignition, forest fire spread, and animal behavior are not well developed. In this paper, we propose a forest ecosystem model based on the Agent-based modelling approach to explore the detailed linkages between different forms of lightning-caused fires and forest biodiversity. The model simulates the lightning ignition, fire spread, vegetation burning and recovery, and multi-species-survival dynamics. The experimental results show the sensitivity between environmental parameters and the magnitude of lightning-caused fires, and the beneficial ecological consequences of lightning-caused fires on forest ecosystems. By exploring detailed linkages between different forms of lightning-caused fires and forest biodiversity, we provide theoretical insights and reference suggestions for forest system governance and biodiversity conservation.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study of an Abstract Forest Ecosystem with Multi-Species under Lightning-Caused Fires\",\"authors\":\"O. Zhi, Shiying Wang, Nisuo Du\",\"doi\":\"10.3390/fire6080308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a complex interaction between lightning-caused fire behavior and the flora and fauna of the forest, which involves the influence of a large number of ecological factors. However, more comprehensive simulation studies under multi-system interactions between lightning ignition, forest fire spread, and animal behavior are not well developed. In this paper, we propose a forest ecosystem model based on the Agent-based modelling approach to explore the detailed linkages between different forms of lightning-caused fires and forest biodiversity. The model simulates the lightning ignition, fire spread, vegetation burning and recovery, and multi-species-survival dynamics. The experimental results show the sensitivity between environmental parameters and the magnitude of lightning-caused fires, and the beneficial ecological consequences of lightning-caused fires on forest ecosystems. By exploring detailed linkages between different forms of lightning-caused fires and forest biodiversity, we provide theoretical insights and reference suggestions for forest system governance and biodiversity conservation.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6080308\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6080308","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Simulation Study of an Abstract Forest Ecosystem with Multi-Species under Lightning-Caused Fires
There is a complex interaction between lightning-caused fire behavior and the flora and fauna of the forest, which involves the influence of a large number of ecological factors. However, more comprehensive simulation studies under multi-system interactions between lightning ignition, forest fire spread, and animal behavior are not well developed. In this paper, we propose a forest ecosystem model based on the Agent-based modelling approach to explore the detailed linkages between different forms of lightning-caused fires and forest biodiversity. The model simulates the lightning ignition, fire spread, vegetation burning and recovery, and multi-species-survival dynamics. The experimental results show the sensitivity between environmental parameters and the magnitude of lightning-caused fires, and the beneficial ecological consequences of lightning-caused fires on forest ecosystems. By exploring detailed linkages between different forms of lightning-caused fires and forest biodiversity, we provide theoretical insights and reference suggestions for forest system governance and biodiversity conservation.