{"title":"加权Besov空间的一个无导数刻画","authors":"W. Pan, H. Wulan","doi":"10.1007/s10476-023-0187-5","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain a characterization of the weighted Besov space <span>\\({{\\cal B}_K}\\left( p \\right)\\)</span> for a weight function <i>K</i>, 0 < <i>p</i> < ∞, in terms of symmetric and derivative-free double integrals with the weight function <i>K</i> in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of <span>\\({{\\cal Q}_K}\\)</span> type spaces is obtained.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Derivative-Free Characterization of the Weighted Besov Spaces\",\"authors\":\"W. Pan, H. Wulan\",\"doi\":\"10.1007/s10476-023-0187-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain a characterization of the weighted Besov space <span>\\\\({{\\\\cal B}_K}\\\\left( p \\\\right)\\\\)</span> for a weight function <i>K</i>, 0 < <i>p</i> < ∞, in terms of symmetric and derivative-free double integrals with the weight function <i>K</i> in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of <span>\\\\({{\\\\cal Q}_K}\\\\)</span> type spaces is obtained.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0187-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0187-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Derivative-Free Characterization of the Weighted Besov Spaces
We obtain a characterization of the weighted Besov space \({{\cal B}_K}\left( p \right)\) for a weight function K, 0 < p < ∞, in terms of symmetric and derivative-free double integrals with the weight function K in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of \({{\cal Q}_K}\) type spaces is obtained.