加权Besov空间的一个无导数刻画

Pub Date : 2023-01-23 DOI:10.1007/s10476-023-0187-5
W. Pan, H. Wulan
{"title":"加权Besov空间的一个无导数刻画","authors":"W. Pan,&nbsp;H. Wulan","doi":"10.1007/s10476-023-0187-5","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain a characterization of the weighted Besov space <span>\\({{\\cal B}_K}\\left( p \\right)\\)</span> for a weight function <i>K</i>, 0 &lt; <i>p</i> &lt; ∞, in terms of symmetric and derivative-free double integrals with the weight function <i>K</i> in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of <span>\\({{\\cal Q}_K}\\)</span> type spaces is obtained.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Derivative-Free Characterization of the Weighted Besov Spaces\",\"authors\":\"W. Pan,&nbsp;H. Wulan\",\"doi\":\"10.1007/s10476-023-0187-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain a characterization of the weighted Besov space <span>\\\\({{\\\\cal B}_K}\\\\left( p \\\\right)\\\\)</span> for a weight function <i>K</i>, 0 &lt; <i>p</i> &lt; ∞, in terms of symmetric and derivative-free double integrals with the weight function <i>K</i> in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of <span>\\\\({{\\\\cal Q}_K}\\\\)</span> type spaces is obtained.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0187-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0187-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了加权Besov空间\({{\cal B}_K}\left(p\right)\)的特征;p<∞,根据单位圆盘中具有权函数K的对称和无导数二重积分。作为副产品,我们对Bergman空间的Littlewood—Paley型的恒等式进行了修改。作为一个应用,得到了\({\cal Q}_K}\)型空间的无导数刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Derivative-Free Characterization of the Weighted Besov Spaces

We obtain a characterization of the weighted Besov space \({{\cal B}_K}\left( p \right)\) for a weight function K, 0 < p < ∞, in terms of symmetric and derivative-free double integrals with the weight function K in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of \({{\cal Q}_K}\) type spaces is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信