30 年时空协方差函数

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY
E. Porcu, R. Furrer, D. Nychka
{"title":"30 年时空协方差函数","authors":"E. Porcu, R. Furrer, D. Nychka","doi":"10.1002/wics.1512","DOIUrl":null,"url":null,"abstract":"In this article, we provide a comprehensive review of space–time covariance functions. As for the spatial domain, we focus on either the d‐dimensional Euclidean space or on the unit d‐dimensional sphere. We start by providing background information about (spatial) covariance functions and their properties along with different types of covariance functions. While we focus primarily on Gaussian processes, many of the results are independent of the underlying distribution, as the covariance only depends on second‐moment relationships. We discuss properties of space–time covariance functions along with the relevant results associated with spectral representations. Special attention is given to the Gneiting class of covariance functions, which has been especially popular in space–time geostatistical modeling. We then discuss some techniques that are useful for constructing new classes of space–time covariance functions. Separate treatment is reserved for spectral models, as well as to what are termed models with special features. We also discuss the problem of estimation of parametric classes of space–time covariance functions. An outlook concludes the paper.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1512","citationCount":"62","resultStr":"{\"title\":\"30 Years of space–time covariance functions\",\"authors\":\"E. Porcu, R. Furrer, D. Nychka\",\"doi\":\"10.1002/wics.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we provide a comprehensive review of space–time covariance functions. As for the spatial domain, we focus on either the d‐dimensional Euclidean space or on the unit d‐dimensional sphere. We start by providing background information about (spatial) covariance functions and their properties along with different types of covariance functions. While we focus primarily on Gaussian processes, many of the results are independent of the underlying distribution, as the covariance only depends on second‐moment relationships. We discuss properties of space–time covariance functions along with the relevant results associated with spectral representations. Special attention is given to the Gneiting class of covariance functions, which has been especially popular in space–time geostatistical modeling. We then discuss some techniques that are useful for constructing new classes of space–time covariance functions. Separate treatment is reserved for spectral models, as well as to what are termed models with special features. We also discuss the problem of estimation of parametric classes of space–time covariance functions. An outlook concludes the paper.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1512\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1512\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1512","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 62

摘要

在这篇文章中,我们对时空协方差函数进行了全面的回顾。至于空间域,我们关注的是d维欧几里得空间或单位d维球面。我们首先提供关于(空间)协方差函数及其性质的背景信息,以及不同类型的协方差函数。虽然我们主要关注高斯过程,但许多结果与潜在分布无关,因为协方差仅取决于二阶矩关系。我们讨论了时空协方差函数的性质以及与谱表示相关的相关结果。特别关注的是Gneiting类协方差函数,它在时空地质统计建模中特别流行。然后,我们讨论了一些对构造新的时空协方差函数类有用的技术。对光谱模型以及所谓的具有特殊特征的模型进行单独处理。我们还讨论了空间-时间协方差函数的参数类的估计问题。论文最后作了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
30 Years of space–time covariance functions
In this article, we provide a comprehensive review of space–time covariance functions. As for the spatial domain, we focus on either the d‐dimensional Euclidean space or on the unit d‐dimensional sphere. We start by providing background information about (spatial) covariance functions and their properties along with different types of covariance functions. While we focus primarily on Gaussian processes, many of the results are independent of the underlying distribution, as the covariance only depends on second‐moment relationships. We discuss properties of space–time covariance functions along with the relevant results associated with spectral representations. Special attention is given to the Gneiting class of covariance functions, which has been especially popular in space–time geostatistical modeling. We then discuss some techniques that are useful for constructing new classes of space–time covariance functions. Separate treatment is reserved for spectral models, as well as to what are termed models with special features. We also discuss the problem of estimation of parametric classes of space–time covariance functions. An outlook concludes the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信