关于自旋加权球方程特征值的渐近性

IF 0.3 Q4 PHYSICS, MULTIDISCIPLINARY
V. S. Otchik
{"title":"关于自旋加权球方程特征值的渐近性","authors":"V. S. Otchik","doi":"10.33581/1561-4085-2022-25-4-368-376","DOIUrl":null,"url":null,"abstract":"Solutions of the spin-weighted spheroidal differential equation are presented in the form of the series involving confluent hypergeometric functions. Relations between solutions with different domains of convergence are derived by considering the confluence of two singularities in an auxiliary equation with four regular singularities. These relations are used to obtain exponentially small corrections to asymptotic expansion of eigenvalues.","PeriodicalId":43601,"journal":{"name":"Nonlinear Phenomena in Complex Systems","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Asymptotics of Eigenvalues of the Spin-Weighted Spheroidal Equation\",\"authors\":\"V. S. Otchik\",\"doi\":\"10.33581/1561-4085-2022-25-4-368-376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solutions of the spin-weighted spheroidal differential equation are presented in the form of the series involving confluent hypergeometric functions. Relations between solutions with different domains of convergence are derived by considering the confluence of two singularities in an auxiliary equation with four regular singularities. These relations are used to obtain exponentially small corrections to asymptotic expansion of eigenvalues.\",\"PeriodicalId\":43601,\"journal\":{\"name\":\"Nonlinear Phenomena in Complex Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Phenomena in Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/1561-4085-2022-25-4-368-376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Phenomena in Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/1561-4085-2022-25-4-368-376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋加权球微分方程的解以包含合流超几何函数的级数形式给出。通过考虑具有四个正则奇点的辅助方程中两个奇点的汇合,导出了具有不同收敛域的解之间的关系。这些关系用于获得对特征值的渐近展开的指数小校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Asymptotics of Eigenvalues of the Spin-Weighted Spheroidal Equation
Solutions of the spin-weighted spheroidal differential equation are presented in the form of the series involving confluent hypergeometric functions. Relations between solutions with different domains of convergence are derived by considering the confluence of two singularities in an auxiliary equation with four regular singularities. These relations are used to obtain exponentially small corrections to asymptotic expansion of eigenvalues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinear Phenomena in Complex Systems
Nonlinear Phenomena in Complex Systems PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
25.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信