Zahra Arab Borzu, A. Baghestani, E. Talebi Ghane, Aliakbar Khadem Maboudi, A. Akhavan, A. Saeedi
{"title":"使用贝叶斯方法建立复发性和终末性事件的联合衰弱模型","authors":"Zahra Arab Borzu, A. Baghestani, E. Talebi Ghane, Aliakbar Khadem Maboudi, A. Akhavan, A. Saeedi","doi":"10.18502/jbe.v8i3.12306","DOIUrl":null,"url":null,"abstract":"Introduction: Recurrent event data are common in many longitudinal studies. Often, a terminating event such as death can be correlated with the recurrent event process. A shared frailty model applied to account for the association between recurrent and terminal events. In some situations, a fraction of subjects experience neither recurrent events nor death; these subjects are cured. \nMethods: In this paper, we discussed the Bayesian approach of a joint frailty model for recurrent and terminal events in the presence of cure fraction. We compared estimates of parameters in the Frequentist and Bayesian approaches via simulation studies in various sample sizes; we applied the joint frailty model in the presence of cure fraction with Frequentist and Bayesian approaches for breast cancer. \nResults: In small sample size Bayesian approach compared to Frequentist approach had a smaller standard error and mean square error, and the coverage probabilities close to nominal level of 95%. Also, in Bayesian approach, the sampling means of the estimated standard errors were close to the empirical standard error. \nConclusion: The simulation results suggested that when sample size was small, the use of Bayesian joint frailty model in the presence of cure fraction led to more efficiency in parameter estimation and statistical inference.","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Frailty Model of Recurrent and Terminal Events in the Presence of Cure Fraction using a Bayesian Approach\",\"authors\":\"Zahra Arab Borzu, A. Baghestani, E. Talebi Ghane, Aliakbar Khadem Maboudi, A. Akhavan, A. Saeedi\",\"doi\":\"10.18502/jbe.v8i3.12306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Recurrent event data are common in many longitudinal studies. Often, a terminating event such as death can be correlated with the recurrent event process. A shared frailty model applied to account for the association between recurrent and terminal events. In some situations, a fraction of subjects experience neither recurrent events nor death; these subjects are cured. \\nMethods: In this paper, we discussed the Bayesian approach of a joint frailty model for recurrent and terminal events in the presence of cure fraction. We compared estimates of parameters in the Frequentist and Bayesian approaches via simulation studies in various sample sizes; we applied the joint frailty model in the presence of cure fraction with Frequentist and Bayesian approaches for breast cancer. \\nResults: In small sample size Bayesian approach compared to Frequentist approach had a smaller standard error and mean square error, and the coverage probabilities close to nominal level of 95%. Also, in Bayesian approach, the sampling means of the estimated standard errors were close to the empirical standard error. \\nConclusion: The simulation results suggested that when sample size was small, the use of Bayesian joint frailty model in the presence of cure fraction led to more efficiency in parameter estimation and statistical inference.\",\"PeriodicalId\":34310,\"journal\":{\"name\":\"Journal of Biostatistics and Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jbe.v8i3.12306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v8i3.12306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Joint Frailty Model of Recurrent and Terminal Events in the Presence of Cure Fraction using a Bayesian Approach
Introduction: Recurrent event data are common in many longitudinal studies. Often, a terminating event such as death can be correlated with the recurrent event process. A shared frailty model applied to account for the association between recurrent and terminal events. In some situations, a fraction of subjects experience neither recurrent events nor death; these subjects are cured.
Methods: In this paper, we discussed the Bayesian approach of a joint frailty model for recurrent and terminal events in the presence of cure fraction. We compared estimates of parameters in the Frequentist and Bayesian approaches via simulation studies in various sample sizes; we applied the joint frailty model in the presence of cure fraction with Frequentist and Bayesian approaches for breast cancer.
Results: In small sample size Bayesian approach compared to Frequentist approach had a smaller standard error and mean square error, and the coverage probabilities close to nominal level of 95%. Also, in Bayesian approach, the sampling means of the estimated standard errors were close to the empirical standard error.
Conclusion: The simulation results suggested that when sample size was small, the use of Bayesian joint frailty model in the presence of cure fraction led to more efficiency in parameter estimation and statistical inference.