印度Barmer盆地近赤道古新世-始新世热盛期的粘土矿物学证据

IF 1.1 4区 地球科学 Q4 CHEMISTRY, PHYSICAL
Clay Minerals Pub Date : 2023-08-09 DOI:10.1180/clm.2023.19
Rohit Kumar, A. Hameed, P. Srivastava
{"title":"印度Barmer盆地近赤道古新世-始新世热盛期的粘土矿物学证据","authors":"Rohit Kumar, A. Hameed, P. Srivastava","doi":"10.1180/clm.2023.19","DOIUrl":null,"url":null,"abstract":"\n The Palaeocene–Eocene Thermal Maximum (PETM) was a global extreme climatic event, but it is relatively unknown from lower latitudes or equatorial regions in comparison to mid- and high latitudes. The present study provides the first clay mineralogical evidence of the PETM and subsequent hyperthermal events in a near-equatorial region represented by the Akli Formation in the Barmer Basin, India. The 32 m-thick succession of the Akli Formation shows abrupt changes in smectite and kaolin abundances preceding, during and succeeding the PETM event. Within the studied section, the kaolin content increases from 5–8% pre-PETM to 30–35% during the PETM, and then again decreases to 5–6% during the post-PETM period. The smectite, however, is marked by a corresponding decrease and its transformation into kaolin in acid weathering conditions. The transformation of the smectite is first marked by hydroxy interlayering and then transformation into kaolin during the PETM. The transformation of smectite into kaolin also resulted in extensive precipitation of iron oxide in sediments. The clay mineralogical changes in the Palaeocene–Eocene transition sediments of the Akli Formation were caused by 3–5°C warming and a 25–50% increase in rainfall during the hyperthermal events. Unusually high charcoal (~20%) fragments during the Palaeocene–Eocene transition also suggest warming and widespread biomass burning during the PETM in the lower latitudes.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clay mineralogical evidence of near-equatorial Palaeocene–Eocene Thermal Maximum in Barmer Basin, India\",\"authors\":\"Rohit Kumar, A. Hameed, P. Srivastava\",\"doi\":\"10.1180/clm.2023.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Palaeocene–Eocene Thermal Maximum (PETM) was a global extreme climatic event, but it is relatively unknown from lower latitudes or equatorial regions in comparison to mid- and high latitudes. The present study provides the first clay mineralogical evidence of the PETM and subsequent hyperthermal events in a near-equatorial region represented by the Akli Formation in the Barmer Basin, India. The 32 m-thick succession of the Akli Formation shows abrupt changes in smectite and kaolin abundances preceding, during and succeeding the PETM event. Within the studied section, the kaolin content increases from 5–8% pre-PETM to 30–35% during the PETM, and then again decreases to 5–6% during the post-PETM period. The smectite, however, is marked by a corresponding decrease and its transformation into kaolin in acid weathering conditions. The transformation of the smectite is first marked by hydroxy interlayering and then transformation into kaolin during the PETM. The transformation of smectite into kaolin also resulted in extensive precipitation of iron oxide in sediments. The clay mineralogical changes in the Palaeocene–Eocene transition sediments of the Akli Formation were caused by 3–5°C warming and a 25–50% increase in rainfall during the hyperthermal events. Unusually high charcoal (~20%) fragments during the Palaeocene–Eocene transition also suggest warming and widespread biomass burning during the PETM in the lower latitudes.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2023.19\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2023.19","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

古新世—始新世极热期(PETM)是一个全球性的极端气候事件,但与中高纬度地区相比,低纬度地区和赤道地区的极热期相对未知。本研究首次提供了以印度Barmer盆地Akli组为代表的近赤道地区PETM及其后高温事件的粘土矿物学证据。32 m厚的Akli组序列显示了在PETM事件之前、期间和之后蒙脱石和高岭土丰度的突变。在研究剖面中,高岭土含量由PETM前的5-8%上升至PETM后的30-35%,而后又下降至5-6%。而蒙脱石则在酸性风化条件下相应减少并转变为高岭土。蒙脱石的转变首先以羟基夹层为主,然后在始新世向高岭土转变。蒙脱石向高岭土的转化也导致沉积物中氧化铁的大量沉淀。Akli组古新世-始新世过渡沉积物的粘土矿物学变化是由3 ~ 5°C的升温和25 ~ 50%的降水增加引起的。古新世-始新世过渡时期异常高的木炭碎片(~20%)也表明在新世新世时期,低纬度地区的变暖和广泛的生物质燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clay mineralogical evidence of near-equatorial Palaeocene–Eocene Thermal Maximum in Barmer Basin, India
The Palaeocene–Eocene Thermal Maximum (PETM) was a global extreme climatic event, but it is relatively unknown from lower latitudes or equatorial regions in comparison to mid- and high latitudes. The present study provides the first clay mineralogical evidence of the PETM and subsequent hyperthermal events in a near-equatorial region represented by the Akli Formation in the Barmer Basin, India. The 32 m-thick succession of the Akli Formation shows abrupt changes in smectite and kaolin abundances preceding, during and succeeding the PETM event. Within the studied section, the kaolin content increases from 5–8% pre-PETM to 30–35% during the PETM, and then again decreases to 5–6% during the post-PETM period. The smectite, however, is marked by a corresponding decrease and its transformation into kaolin in acid weathering conditions. The transformation of the smectite is first marked by hydroxy interlayering and then transformation into kaolin during the PETM. The transformation of smectite into kaolin also resulted in extensive precipitation of iron oxide in sediments. The clay mineralogical changes in the Palaeocene–Eocene transition sediments of the Akli Formation were caused by 3–5°C warming and a 25–50% increase in rainfall during the hyperthermal events. Unusually high charcoal (~20%) fragments during the Palaeocene–Eocene transition also suggest warming and widespread biomass burning during the PETM in the lower latitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clay Minerals
Clay Minerals 地学-矿物学
CiteScore
3.00
自引率
20.00%
发文量
25
审稿时长
6 months
期刊介绍: Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信