强细胞分解性的判据

IF 0.3 4区 数学 Q1 Arts and Humanities
Somayyeh Tari
{"title":"强细胞分解性的判据","authors":"Somayyeh Tari","doi":"10.1007/s00153-023-00862-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( {\\mathcal {M}}=(M, &lt;, \\ldots ) \\)</span> be a weakly o-minimal structure. Assume that <span>\\( {\\mathcal {D}}ef({\\mathcal {M}})\\)</span> is the collection of all definable sets of <span>\\( {\\mathcal {M}} \\)</span> and for any <span>\\( m\\in {\\mathbb {N}} \\)</span>, <span>\\( {\\mathcal {D}}ef_m({\\mathcal {M}}) \\)</span> is the collection of all definable subsets of <span>\\( M^m \\)</span> in <span>\\( {\\mathcal {M}} \\)</span>. We show that the structure <span>\\( {\\mathcal {M}} \\)</span> has the strong cell decomposition property if and only if there is an o-minimal structure <span>\\( {\\mathcal {N}} \\)</span> such that <span>\\( {\\mathcal {D}}ef({\\mathcal {M}})=\\{Y\\cap M^m: \\ m\\in {\\mathbb {N}}, Y\\in {\\mathcal {D}}ef_m({\\mathcal {N}})\\} \\)</span>. Using this result, we prove that: (a) Every induced structure has the strong cell decomposition property. (b) The structure <span>\\( {\\mathcal {M}} \\)</span> has the strong cell decomposition property if and only if the weakly o-minimal structure <span>\\( {\\mathcal {M}}^*_M \\)</span> has the strong cell decomposition property. Also we examine some properties of non-valuational weakly o-minimal structures in the context of weakly o-minimal structures admitting the strong cell decomposition property.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A criterion for the strong cell decomposition property\",\"authors\":\"Somayyeh Tari\",\"doi\":\"10.1007/s00153-023-00862-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\( {\\\\mathcal {M}}=(M, &lt;, \\\\ldots ) \\\\)</span> be a weakly o-minimal structure. Assume that <span>\\\\( {\\\\mathcal {D}}ef({\\\\mathcal {M}})\\\\)</span> is the collection of all definable sets of <span>\\\\( {\\\\mathcal {M}} \\\\)</span> and for any <span>\\\\( m\\\\in {\\\\mathbb {N}} \\\\)</span>, <span>\\\\( {\\\\mathcal {D}}ef_m({\\\\mathcal {M}}) \\\\)</span> is the collection of all definable subsets of <span>\\\\( M^m \\\\)</span> in <span>\\\\( {\\\\mathcal {M}} \\\\)</span>. We show that the structure <span>\\\\( {\\\\mathcal {M}} \\\\)</span> has the strong cell decomposition property if and only if there is an o-minimal structure <span>\\\\( {\\\\mathcal {N}} \\\\)</span> such that <span>\\\\( {\\\\mathcal {D}}ef({\\\\mathcal {M}})=\\\\{Y\\\\cap M^m: \\\\ m\\\\in {\\\\mathbb {N}}, Y\\\\in {\\\\mathcal {D}}ef_m({\\\\mathcal {N}})\\\\} \\\\)</span>. Using this result, we prove that: (a) Every induced structure has the strong cell decomposition property. (b) The structure <span>\\\\( {\\\\mathcal {M}} \\\\)</span> has the strong cell decomposition property if and only if the weakly o-minimal structure <span>\\\\( {\\\\mathcal {M}}^*_M \\\\)</span> has the strong cell decomposition property. Also we examine some properties of non-valuational weakly o-minimal structures in the context of weakly o-minimal structures admitting the strong cell decomposition property.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00862-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00862-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

设\( {\mathcal {M}}=(M, <, \ldots ) \)为弱极小结构。假设\( {\mathcal {D}}ef({\mathcal {M}})\)是\( {\mathcal {M}} \)的所有可定义集合的集合,对于任何\( m\in {\mathbb {N}} \), \( {\mathcal {D}}ef_m({\mathcal {M}}) \)是\( {\mathcal {M}} \)中\( M^m \)的所有可定义子集的集合。我们证明了结构\( {\mathcal {M}} \)具有很强的细胞分解性质当且仅当存在一个0最小结构\( {\mathcal {N}} \)使得\( {\mathcal {D}}ef({\mathcal {M}})=\{Y\cap M^m: \ m\in {\mathbb {N}}, Y\in {\mathcal {D}}ef_m({\mathcal {N}})\} \)。利用这一结果,我们证明了:(a)每一个诱导结构都具有很强的细胞分解性。(b)当且仅当弱o极小结构\( {\mathcal {M}}^*_M \)具有强细胞分解性时,结构\( {\mathcal {M}} \)具有强细胞分解性。在具有强胞分解性质的弱o-极小结构的背景下,研究了非赋值弱o-极小结构的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A criterion for the strong cell decomposition property

Let \( {\mathcal {M}}=(M, <, \ldots ) \) be a weakly o-minimal structure. Assume that \( {\mathcal {D}}ef({\mathcal {M}})\) is the collection of all definable sets of \( {\mathcal {M}} \) and for any \( m\in {\mathbb {N}} \), \( {\mathcal {D}}ef_m({\mathcal {M}}) \) is the collection of all definable subsets of \( M^m \) in \( {\mathcal {M}} \). We show that the structure \( {\mathcal {M}} \) has the strong cell decomposition property if and only if there is an o-minimal structure \( {\mathcal {N}} \) such that \( {\mathcal {D}}ef({\mathcal {M}})=\{Y\cap M^m: \ m\in {\mathbb {N}}, Y\in {\mathcal {D}}ef_m({\mathcal {N}})\} \). Using this result, we prove that: (a) Every induced structure has the strong cell decomposition property. (b) The structure \( {\mathcal {M}} \) has the strong cell decomposition property if and only if the weakly o-minimal structure \( {\mathcal {M}}^*_M \) has the strong cell decomposition property. Also we examine some properties of non-valuational weakly o-minimal structures in the context of weakly o-minimal structures admitting the strong cell decomposition property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信