耀斑可能性和区域爆发预测(flrecast)项目:大数据和机器学习时代的耀斑预测

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
M. Georgoulis, D. S. Bloomfield, M. Piana, A. Massone, M. Soldati, P. Gallagher, E. Pariat, N. Vilmer, É. Buchlin, F. Baudin, A. Csillaghy, H. Sathiapal, D. Jackson, P. Alingery, F. Benvenuto, C. Campi, K. Florios, Constantin Gontikakis, C. Guennou, J. A. Guerra, I. Kontogiannis, Vittorio Latorre, S. Murray, Sung-Hong Park, Samuel von Stachelski, Aleksandar Torbica, Dario Vischi, Mark Worsfold
{"title":"耀斑可能性和区域爆发预测(flrecast)项目:大数据和机器学习时代的耀斑预测","authors":"M. Georgoulis, D. S. Bloomfield, M. Piana, A. Massone, M. Soldati, P. Gallagher, E. Pariat, N. Vilmer, É. Buchlin, F. Baudin, A. Csillaghy, H. Sathiapal, D. Jackson, P. Alingery, F. Benvenuto, C. Campi, K. Florios, Constantin Gontikakis, C. Guennou, J. A. Guerra, I. Kontogiannis, Vittorio Latorre, S. Murray, Sung-Hong Park, Samuel von Stachelski, Aleksandar Torbica, Dario Vischi, Mark Worsfold","doi":"10.1051/SWSC/2021023","DOIUrl":null,"url":null,"abstract":"The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era\",\"authors\":\"M. Georgoulis, D. S. Bloomfield, M. Piana, A. Massone, M. Soldati, P. Gallagher, E. Pariat, N. Vilmer, É. Buchlin, F. Baudin, A. Csillaghy, H. Sathiapal, D. Jackson, P. Alingery, F. Benvenuto, C. Campi, K. Florios, Constantin Gontikakis, C. Guennou, J. A. Guerra, I. Kontogiannis, Vittorio Latorre, S. Murray, Sung-Hong Park, Samuel von Stachelski, Aleksandar Torbica, Dario Vischi, Mark Worsfold\",\"doi\":\"10.1051/SWSC/2021023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2021-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/SWSC/2021023\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/SWSC/2021023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15

摘要

欧盟资助了FLARECAST项目,该项目从2015年1月持续到2018年2月。FLARECAST专注于对操作(R2O)的研究,因此在太阳耀斑预测学科中引入了一些创新。FLARECAST的创新是:首先,在平等的基础上处理了数百种被视为有前途的耀斑预测因子的物理特性,扩展了之前的多项工作;其次,在同等基础上,使用十四(14)种不同的机器学习技术来优化由这些众多预测因子创建的巨大大数据参数空间;第三,建立一个强有力的、三管齐下的沟通努力,面向政策制定者、太空气象利益相关者和广大公众。FLARECAST承诺在全球范围内公开其所有数据、代码和基础设施。在多个机器学习算法中,170+个属性(目前共有209个预测因子可用)的组合使用,其中一些是专门为该项目设计的,产生了一组不断变化的最佳预测因子,用于预测不同的燃烧水平,至少对于主要的燃烧。与此同时,FLARECAST重申了严格的训练和测试实践的重要性,以避免过于乐观的作战前预测性能。此外,该项目(a)测试了新的和重新审视的物理直观的耀斑预测因子,(b)为从耀斑到喷发耀斑的转变提供了有意义的线索,即与日冕物质抛射(CME)相关的事件。这些线索,加上FLARECAST数据、算法和基础设施,有助于促进综合空间天气预报工作,采取措施避免工作重复。尽管FLARECAST是迄今为止最密集、最系统的耀斑预测工作之一,但它未能令人信服地打破太阳耀斑发生和预测的随机性障碍:因此,太阳耀斑预测仍然具有内在的概率性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信