Bo-Hae Im, Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac, Lan Huong Pham
{"title":"论Zagier-Hoffman的积极特征猜想","authors":"Bo-Hae Im, Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac, Lan Huong Pham","doi":"10.4007/annals.2021.194.1.6","DOIUrl":null,"url":null,"abstract":"We study Todd-Thakur's analogues of Zagier-Hoffman's conjectures in positive characteristic. These conjectures predict the dimension and an explicit basis Tw of the span of characteristic p multiple zeta values of fixed weight w which were introduced by Thakur as analogues of classical multiple zeta values of Euler. In the present paper we first establish the algebraic part of these conjectures which states that the span of characteristic p multiple zeta values of weight w is generated by the set Tw. As a consequence, we obtain upper bounds for the dimension. This is the analogue of Brown's theorem and also those of Deligne-Goncharov and Terasoma. We then prove two results towards the transcendental part of these conjectures. First, we establish the linear independence for a large subset of Tw and yield lower bounds for the dimension. Second, for small weights we prove the linear independence for the whole set Tw and completely solve Zagier-Hoffman's conjectures in positive characteristic. Our key tool is the Anderson-Brownawell-Papanikolas criterion for linear independence in positive characteristic.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On Zagier-Hoffman's conjectures in positive\\n characteristic\",\"authors\":\"Bo-Hae Im, Hojin Kim, Khac Nhuan Le, Tuan Ngo Dac, Lan Huong Pham\",\"doi\":\"10.4007/annals.2021.194.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Todd-Thakur's analogues of Zagier-Hoffman's conjectures in positive characteristic. These conjectures predict the dimension and an explicit basis Tw of the span of characteristic p multiple zeta values of fixed weight w which were introduced by Thakur as analogues of classical multiple zeta values of Euler. In the present paper we first establish the algebraic part of these conjectures which states that the span of characteristic p multiple zeta values of weight w is generated by the set Tw. As a consequence, we obtain upper bounds for the dimension. This is the analogue of Brown's theorem and also those of Deligne-Goncharov and Terasoma. We then prove two results towards the transcendental part of these conjectures. First, we establish the linear independence for a large subset of Tw and yield lower bounds for the dimension. Second, for small weights we prove the linear independence for the whole set Tw and completely solve Zagier-Hoffman's conjectures in positive characteristic. Our key tool is the Anderson-Brownawell-Papanikolas criterion for linear independence in positive characteristic.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2021.194.1.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2021.194.1.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Zagier-Hoffman's conjectures in positive
characteristic
We study Todd-Thakur's analogues of Zagier-Hoffman's conjectures in positive characteristic. These conjectures predict the dimension and an explicit basis Tw of the span of characteristic p multiple zeta values of fixed weight w which were introduced by Thakur as analogues of classical multiple zeta values of Euler. In the present paper we first establish the algebraic part of these conjectures which states that the span of characteristic p multiple zeta values of weight w is generated by the set Tw. As a consequence, we obtain upper bounds for the dimension. This is the analogue of Brown's theorem and also those of Deligne-Goncharov and Terasoma. We then prove two results towards the transcendental part of these conjectures. First, we establish the linear independence for a large subset of Tw and yield lower bounds for the dimension. Second, for small weights we prove the linear independence for the whole set Tw and completely solve Zagier-Hoffman's conjectures in positive characteristic. Our key tool is the Anderson-Brownawell-Papanikolas criterion for linear independence in positive characteristic.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.