$\mathbb{R}^4中非重叠翻译器的分类$

IF 1.8 2区 数学 Q1 MATHEMATICS
K. Choi, Robert Haslhofer, Or Hershkovits
{"title":"$\\mathbb{R}^4中非重叠翻译器的分类$","authors":"K. Choi, Robert Haslhofer, Or Hershkovits","doi":"10.4310/cjm.2023.v11.n3.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we classify all noncollapsed singularity models for the mean curvature flow of 3-dimensional hypersurfaces in $\\mathbb{R}^4$ or more generally in $4$-manifolds. Specifically, we prove that every noncollapsed translating hypersurface in $\\mathbb{R}^4$ is either $\\mathbb{R}\\times$2d-bowl, or a 3d round bowl, or belongs to the one-parameter family of 3d oval bowls constructed by Hoffman-Ilmanen-Martin-White.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of noncollapsed translators in $\\\\mathbb{R}^4$\",\"authors\":\"K. Choi, Robert Haslhofer, Or Hershkovits\",\"doi\":\"10.4310/cjm.2023.v11.n3.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we classify all noncollapsed singularity models for the mean curvature flow of 3-dimensional hypersurfaces in $\\\\mathbb{R}^4$ or more generally in $4$-manifolds. Specifically, we prove that every noncollapsed translating hypersurface in $\\\\mathbb{R}^4$ is either $\\\\mathbb{R}\\\\times$2d-bowl, or a 3d round bowl, or belongs to the one-parameter family of 3d oval bowls constructed by Hoffman-Ilmanen-Martin-White.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2023.v11.n3.a1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2023.v11.n3.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文对$\mathbb{R}^4$或更一般地$4$-流形中三维超曲面的平均曲率流的所有非坍缩奇异模型进行了分类。具体来说,我们证明了$\mathbb{R}^4$中的每一个非坍缩平移超曲面要么是$\mathbb{R}\乘以$2d碗,要么是一个3d圆碗,要么属于霍夫曼-伊曼-马丁-怀特构造的三维椭圆碗的单参数族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of noncollapsed translators in $\mathbb{R}^4$
In this paper, we classify all noncollapsed singularity models for the mean curvature flow of 3-dimensional hypersurfaces in $\mathbb{R}^4$ or more generally in $4$-manifolds. Specifically, we prove that every noncollapsed translating hypersurface in $\mathbb{R}^4$ is either $\mathbb{R}\times$2d-bowl, or a 3d round bowl, or belongs to the one-parameter family of 3d oval bowls constructed by Hoffman-Ilmanen-Martin-White.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信