{"title":"Dirichlet-Morrey空间中具有解的复线性微分方程","authors":"Y. Sun, B. Liu, J. L. Liu","doi":"10.1007/s10476-023-0205-7","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>n</i>th derivative criterion for functions belonging to the Dirichlet–Morrey space <span>\\({\\cal D}_p^\\lambda \\)</span> is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation </p><div><div><span>$${f^{\\left( n \\right)}} + {A_{n - 1}}\\left( z \\right){f^{\\left( {n - 1} \\right)}} + \\cdots + {A_1}\\left( z \\right){f^\\prime } + {A_0}\\left( z \\right)f = {A_n}\\left( z \\right)$$</span></div></div><p> are obtained such that all solutions belong to <span>\\({\\cal D}_p^\\lambda \\)</span>, where <i>A</i><sub><i>j</i></sub>(<i>z</i>) are analytic functions in the unit disc, <i>j</i> = 0,…,<i>n</i>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 1","pages":"295 - 306"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Linear Differential Equations with Solutions in Dirichlet–Morrey Spaces\",\"authors\":\"Y. Sun, B. Liu, J. L. Liu\",\"doi\":\"10.1007/s10476-023-0205-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>n</i>th derivative criterion for functions belonging to the Dirichlet–Morrey space <span>\\\\({\\\\cal D}_p^\\\\lambda \\\\)</span> is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation </p><div><div><span>$${f^{\\\\left( n \\\\right)}} + {A_{n - 1}}\\\\left( z \\\\right){f^{\\\\left( {n - 1} \\\\right)}} + \\\\cdots + {A_1}\\\\left( z \\\\right){f^\\\\prime } + {A_0}\\\\left( z \\\\right)f = {A_n}\\\\left( z \\\\right)$$</span></div></div><p> are obtained such that all solutions belong to <span>\\\\({\\\\cal D}_p^\\\\lambda \\\\)</span>, where <i>A</i><sub><i>j</i></sub>(<i>z</i>) are analytic functions in the unit disc, <i>j</i> = 0,…,<i>n</i>.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 1\",\"pages\":\"295 - 306\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0205-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0205-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Complex Linear Differential Equations with Solutions in Dirichlet–Morrey Spaces
The nth derivative criterion for functions belonging to the Dirichlet–Morrey space \({\cal D}_p^\lambda \) is given in this paper. Furthermore, two sufficient conditions for coefficients of the complex linear differential equation
$${f^{\left( n \right)}} + {A_{n - 1}}\left( z \right){f^{\left( {n - 1} \right)}} + \cdots + {A_1}\left( z \right){f^\prime } + {A_0}\left( z \right)f = {A_n}\left( z \right)$$
are obtained such that all solutions belong to \({\cal D}_p^\lambda \), where Aj(z) are analytic functions in the unit disc, j = 0,…,n.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.