{"title":"ω -烯基三甲基硅烷/丙烯与异相Ziegler - Natta催化剂的共聚:烯基长度如何影响共聚单体的掺入?","authors":"Fengtao Chen, Zhijian Zhang, Yawei Qin, Jin-Yong Dong","doi":"10.1002/mren.202300004","DOIUrl":null,"url":null,"abstract":"<p>Three <i>ω</i>-alkenyltrimethylsilanes of different alkenyl moieties, i.e., 3-butenyltrimethylsilane, 5-hexenyltrimethylsilane, and 7-octenyltrimethylsilane, are copolymerized with propylene over a heterogeneous Ziegler-Natta catalyst. The experimental results reveal that, at odds with what the molecular volumes will foretell, 5-hexenyltrimethylsilane top the three <i>ω</i>-alkenyltrimethylsilanes in incorporation rate into PP while 3-butenyltrimethylsilane becomes the most sluggish of the three. This comonomer incorporation rate order is in line with that of <i>ω</i>-alkenylmethyldichlorosilanes in copolymerization with propylene-synthesizing long-chain-branched PP (LCB-PP), pointing to a peculiar alkenyl length effect on comonomer incorporation rate for these comonomers. DFT simulation is then applied to seek energetic basis in coordination-insertion for such an effect. It is revealed that complexation abilities of the three <i>ω</i>-alkenyltrimethylsilanes decrease in the following order: 3-butenyltrimethylsilane > 5-hexenyltrimethylsilane > 7-octenyltrimethylsilane, in line with their molecular sizes. However, the insertion energy barriers increase in the order of: 5-hexenyltrimethylsilane < 7-octenyltrimethylsilane < 3-butenyltrimethylsilane. The repulsive interaction between the bulky trimethylsilane functionality of <i>ω</i>-alkenyltrimethylsilanes and growing PP chain is found to contribute significantly to the insertion energy barrier, which grows disproportionally large with 3-butenyltrimethylsilane. The current discovery will be conducive to understanding the more complex <i>ω</i>-alkenylmethyldichlorosilane/propylene copolymerization that synthesizes the industrially important LCB-PP.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copolymerization of ω-Alkenyltrimethylsilane/Propylene with Heterogeneous Ziegler-Natta Catalyst: How Dose Alkenyl Length Affect Comonomer Incorporation?\",\"authors\":\"Fengtao Chen, Zhijian Zhang, Yawei Qin, Jin-Yong Dong\",\"doi\":\"10.1002/mren.202300004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three <i>ω</i>-alkenyltrimethylsilanes of different alkenyl moieties, i.e., 3-butenyltrimethylsilane, 5-hexenyltrimethylsilane, and 7-octenyltrimethylsilane, are copolymerized with propylene over a heterogeneous Ziegler-Natta catalyst. The experimental results reveal that, at odds with what the molecular volumes will foretell, 5-hexenyltrimethylsilane top the three <i>ω</i>-alkenyltrimethylsilanes in incorporation rate into PP while 3-butenyltrimethylsilane becomes the most sluggish of the three. This comonomer incorporation rate order is in line with that of <i>ω</i>-alkenylmethyldichlorosilanes in copolymerization with propylene-synthesizing long-chain-branched PP (LCB-PP), pointing to a peculiar alkenyl length effect on comonomer incorporation rate for these comonomers. DFT simulation is then applied to seek energetic basis in coordination-insertion for such an effect. It is revealed that complexation abilities of the three <i>ω</i>-alkenyltrimethylsilanes decrease in the following order: 3-butenyltrimethylsilane > 5-hexenyltrimethylsilane > 7-octenyltrimethylsilane, in line with their molecular sizes. However, the insertion energy barriers increase in the order of: 5-hexenyltrimethylsilane < 7-octenyltrimethylsilane < 3-butenyltrimethylsilane. The repulsive interaction between the bulky trimethylsilane functionality of <i>ω</i>-alkenyltrimethylsilanes and growing PP chain is found to contribute significantly to the insertion energy barrier, which grows disproportionally large with 3-butenyltrimethylsilane. The current discovery will be conducive to understanding the more complex <i>ω</i>-alkenylmethyldichlorosilane/propylene copolymerization that synthesizes the industrially important LCB-PP.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Copolymerization of ω-Alkenyltrimethylsilane/Propylene with Heterogeneous Ziegler-Natta Catalyst: How Dose Alkenyl Length Affect Comonomer Incorporation?
Three ω-alkenyltrimethylsilanes of different alkenyl moieties, i.e., 3-butenyltrimethylsilane, 5-hexenyltrimethylsilane, and 7-octenyltrimethylsilane, are copolymerized with propylene over a heterogeneous Ziegler-Natta catalyst. The experimental results reveal that, at odds with what the molecular volumes will foretell, 5-hexenyltrimethylsilane top the three ω-alkenyltrimethylsilanes in incorporation rate into PP while 3-butenyltrimethylsilane becomes the most sluggish of the three. This comonomer incorporation rate order is in line with that of ω-alkenylmethyldichlorosilanes in copolymerization with propylene-synthesizing long-chain-branched PP (LCB-PP), pointing to a peculiar alkenyl length effect on comonomer incorporation rate for these comonomers. DFT simulation is then applied to seek energetic basis in coordination-insertion for such an effect. It is revealed that complexation abilities of the three ω-alkenyltrimethylsilanes decrease in the following order: 3-butenyltrimethylsilane > 5-hexenyltrimethylsilane > 7-octenyltrimethylsilane, in line with their molecular sizes. However, the insertion energy barriers increase in the order of: 5-hexenyltrimethylsilane < 7-octenyltrimethylsilane < 3-butenyltrimethylsilane. The repulsive interaction between the bulky trimethylsilane functionality of ω-alkenyltrimethylsilanes and growing PP chain is found to contribute significantly to the insertion energy barrier, which grows disproportionally large with 3-butenyltrimethylsilane. The current discovery will be conducive to understanding the more complex ω-alkenylmethyldichlorosilane/propylene copolymerization that synthesizes the industrially important LCB-PP.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.