{"title":"具有等熵基的伯努利位移是同构的","authors":"Brandon Seward","doi":"10.3934/jmd.2022011","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove that if <inline-formula><tex-math id=\"M1\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula> is a countably infinite group and <inline-formula><tex-math id=\"M2\">\\begin{document}$ (L, \\lambda) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ (K, \\kappa) $\\end{document}</tex-math></inline-formula> are probability spaces having equal Shannon entropy, then the Bernoulli shifts <inline-formula><tex-math id=\"M4\">\\begin{document}$ G \\curvearrowright (L^G, \\lambda^G) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ G \\curvearrowright (K^G, \\kappa^G) $\\end{document}</tex-math></inline-formula> are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\kappa $\\end{document}</tex-math></inline-formula> have at least <inline-formula><tex-math id=\"M8\">\\begin{document}$ 3 $\\end{document}</tex-math></inline-formula> points in their support. We furthermore produce finitary isomorphisms in the case where both <inline-formula><tex-math id=\"M9\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ K $\\end{document}</tex-math></inline-formula> are finite.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bernoulli shifts with bases of equal entropy are isomorphic\",\"authors\":\"Brandon Seward\",\"doi\":\"10.3934/jmd.2022011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We prove that if <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ G $\\\\end{document}</tex-math></inline-formula> is a countably infinite group and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ (L, \\\\lambda) $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ (K, \\\\kappa) $\\\\end{document}</tex-math></inline-formula> are probability spaces having equal Shannon entropy, then the Bernoulli shifts <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ G \\\\curvearrowright (L^G, \\\\lambda^G) $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ G \\\\curvearrowright (K^G, \\\\kappa^G) $\\\\end{document}</tex-math></inline-formula> are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\kappa $\\\\end{document}</tex-math></inline-formula> have at least <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ 3 $\\\\end{document}</tex-math></inline-formula> points in their support. We furthermore produce finitary isomorphisms in the case where both <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ K $\\\\end{document}</tex-math></inline-formula> are finite.</p>\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bernoulli shifts with bases of equal entropy are isomorphic
We prove that if \begin{document}$ G $\end{document} is a countably infinite group and \begin{document}$ (L, \lambda) $\end{document} and \begin{document}$ (K, \kappa) $\end{document} are probability spaces having equal Shannon entropy, then the Bernoulli shifts \begin{document}$ G \curvearrowright (L^G, \lambda^G) $\end{document} and \begin{document}$ G \curvearrowright (K^G, \kappa^G) $\end{document} are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both \begin{document}$ \lambda $\end{document} and \begin{document}$ \kappa $\end{document} have at least \begin{document}$ 3 $\end{document} points in their support. We furthermore produce finitary isomorphisms in the case where both \begin{document}$ L $\end{document} and \begin{document}$ K $\end{document} are finite.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.