具有等熵基的伯努利位移是同构的

IF 0.7 1区 数学 Q2 MATHEMATICS
Brandon Seward
{"title":"具有等熵基的伯努利位移是同构的","authors":"Brandon Seward","doi":"10.3934/jmd.2022011","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We prove that if <inline-formula><tex-math id=\"M1\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula> is a countably infinite group and <inline-formula><tex-math id=\"M2\">\\begin{document}$ (L, \\lambda) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ (K, \\kappa) $\\end{document}</tex-math></inline-formula> are probability spaces having equal Shannon entropy, then the Bernoulli shifts <inline-formula><tex-math id=\"M4\">\\begin{document}$ G \\curvearrowright (L^G, \\lambda^G) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ G \\curvearrowright (K^G, \\kappa^G) $\\end{document}</tex-math></inline-formula> are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\lambda $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\kappa $\\end{document}</tex-math></inline-formula> have at least <inline-formula><tex-math id=\"M8\">\\begin{document}$ 3 $\\end{document}</tex-math></inline-formula> points in their support. We furthermore produce finitary isomorphisms in the case where both <inline-formula><tex-math id=\"M9\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M10\">\\begin{document}$ K $\\end{document}</tex-math></inline-formula> are finite.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Bernoulli shifts with bases of equal entropy are isomorphic\",\"authors\":\"Brandon Seward\",\"doi\":\"10.3934/jmd.2022011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We prove that if <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ G $\\\\end{document}</tex-math></inline-formula> is a countably infinite group and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ (L, \\\\lambda) $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ (K, \\\\kappa) $\\\\end{document}</tex-math></inline-formula> are probability spaces having equal Shannon entropy, then the Bernoulli shifts <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ G \\\\curvearrowright (L^G, \\\\lambda^G) $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ G \\\\curvearrowright (K^G, \\\\kappa^G) $\\\\end{document}</tex-math></inline-formula> are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\lambda $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\kappa $\\\\end{document}</tex-math></inline-formula> have at least <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ 3 $\\\\end{document}</tex-math></inline-formula> points in their support. We furthermore produce finitary isomorphisms in the case where both <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ K $\\\\end{document}</tex-math></inline-formula> are finite.</p>\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

我们证明了如果\ begin{document}$G$\ end{document}是可数无限群,并且\ begin{document}$(L,\lambda)$\ end{document}和\ begin}document}$(K,\kappa)$\end{文档}是具有相等Shannon熵的概率空间,则伯努利移位\ begin{document}$G\curvearrowright(L^G,λ^G)$\end{document}和\ begin{document}$G\ccurvearrowRight(K^G,κ^G)$\end{document}是同构的。这将奥恩斯坦著名的同构定理推广到所有可数无限群。我们的证明建立在Lewis Bowen在2011年提出的一个稍微弱一点的定理之上,该定理要求\ begin{document}$\lambda$\end{document}和\ begin{document}$\kappa$\end{document}都至少有\ begin}$3$\end}点支持。在\begin{document}$L$\end{document}和\begin{document}$K$\end}都是有限的情况下,我们进一步产生了有限同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bernoulli shifts with bases of equal entropy are isomorphic

We prove that if \begin{document}$ G $\end{document} is a countably infinite group and \begin{document}$ (L, \lambda) $\end{document} and \begin{document}$ (K, \kappa) $\end{document} are probability spaces having equal Shannon entropy, then the Bernoulli shifts \begin{document}$ G \curvearrowright (L^G, \lambda^G) $\end{document} and \begin{document}$ G \curvearrowright (K^G, \kappa^G) $\end{document} are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both \begin{document}$ \lambda $\end{document} and \begin{document}$ \kappa $\end{document} have at least \begin{document}$ 3 $\end{document} points in their support. We furthermore produce finitary isomorphisms in the case where both \begin{document}$ L $\end{document} and \begin{document}$ K $\end{document} are finite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信