神性概念主义数学的信仰表现主义解释

IF 0.2 0 PHILOSOPHY
David M. Freeman
{"title":"神性概念主义数学的信仰表现主义解释","authors":"David M. Freeman","doi":"10.1515/mp-2021-0011","DOIUrl":null,"url":null,"abstract":"Abstract Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism (DC), which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to explain the utility of mathematical objects on the basis of their existence. To address this weakness, we propose an appeal to Liggins’ theory of Belief Expressionism (BE). Indeed, we point out that BE is amenable to the ontological claims of DC while also explaining the utility of mathematical objects apart from reliance upon their existence. We illustrate these themes via a case study of Peano Arithmetic.","PeriodicalId":43147,"journal":{"name":"Metaphysica-International Journal for Ontology & Metaphysics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Belief Expressionist Explanation of Divine Conceptualist Mathematics\",\"authors\":\"David M. Freeman\",\"doi\":\"10.1515/mp-2021-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism (DC), which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to explain the utility of mathematical objects on the basis of their existence. To address this weakness, we propose an appeal to Liggins’ theory of Belief Expressionism (BE). Indeed, we point out that BE is amenable to the ontological claims of DC while also explaining the utility of mathematical objects apart from reliance upon their existence. We illustrate these themes via a case study of Peano Arithmetic.\",\"PeriodicalId\":43147,\"journal\":{\"name\":\"Metaphysica-International Journal for Ontology & Metaphysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaphysica-International Journal for Ontology & Metaphysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mp-2021-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaphysica-International Journal for Ontology & Metaphysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mp-2021-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

许多人指出,数学对象的效用与它们的本体论地位有些脱节。例如,有人可能会争辩说,无论数字是否存在,算术都是有用的。我们在神圣概念主义(DC)的背景下探索这一现象,它声称数学对象作为神圣心灵中的思想存在。虽然不反对DC命题,但我们认为DC命题可以导致关于数学对象的本体论状态的认识论不确定性。这削弱了DC在数学对象存在的基础上解释其效用的尝试。为了解决这一弱点,我们提出求助于利金斯的信仰表现主义理论(BE)。事实上,我们指出,除了依赖于数学对象的存在之外,他也解释了数学对象的效用,这符合DC的本体论主张。我们通过Peano算术的案例研究来说明这些主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Belief Expressionist Explanation of Divine Conceptualist Mathematics
Abstract Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism (DC), which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to explain the utility of mathematical objects on the basis of their existence. To address this weakness, we propose an appeal to Liggins’ theory of Belief Expressionism (BE). Indeed, we point out that BE is amenable to the ontological claims of DC while also explaining the utility of mathematical objects apart from reliance upon their existence. We illustrate these themes via a case study of Peano Arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
50.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信