{"title":"针对泊松或伽马分布数据的两阶段实验试验的贝叶斯预测模型","authors":"Houda Bourezaz, H. Merabet, P. Druilhet","doi":"10.1285/I20705948V13N1P268","DOIUrl":null,"url":null,"abstract":"We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"268-283"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian prediction modelling for two-stage experimental trials for Poisson or Gamma distributed data\",\"authors\":\"Houda Bourezaz, H. Merabet, P. Druilhet\",\"doi\":\"10.1285/I20705948V13N1P268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"268-283\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N1P268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian prediction modelling for two-stage experimental trials for Poisson or Gamma distributed data
We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.