针对泊松或伽马分布数据的两阶段实验试验的贝叶斯预测模型

IF 0.6 Q4 STATISTICS & PROBABILITY
Houda Bourezaz, H. Merabet, P. Druilhet
{"title":"针对泊松或伽马分布数据的两阶段实验试验的贝叶斯预测模型","authors":"Houda Bourezaz, H. Merabet, P. Druilhet","doi":"10.1285/I20705948V13N1P268","DOIUrl":null,"url":null,"abstract":"We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"268-283"},"PeriodicalIF":0.6000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian prediction modelling for two-stage experimental trials for Poisson or Gamma distributed data\",\"authors\":\"Houda Bourezaz, H. Merabet, P. Druilhet\",\"doi\":\"10.1285/I20705948V13N1P268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"13 1\",\"pages\":\"268-283\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N1P268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N1P268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑贝叶斯预测模型来评估第一阶段实验后的满意度指数,以便决定在第二阶段停止或继续。我们将这种方法应用于泊松和伽玛分布结果在许多领域,如可靠性或生存分析早期终止由于无效或有效。我们研究两种决策:混合贝叶斯-频率方法或全贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian prediction modelling for two-stage experimental trials for Poisson or Gamma distributed data
We consider Bayesian prediction modelling to evaluate a satisfaction index after a first phase of experiment in order to decide to stop or continue at the second stage. We apply this method to Poisson and Gamma distributed outcomes in many fields such as reliability or survival analysis for early termination due to either futility or efficacy. We look at two kinds of decisions making: an hybrid Bayesian-frequentist or a full Bayesian approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信