{"title":"田口设计聚乙烯醇(PVA)/阿拉伯胶(AG)/MgO纳米颗粒生物纳米复合材料漱口水抗菌性能研究","authors":"Mohammad Salmani Mobarakeh, A. Moghadam","doi":"10.1680/jbibn.21.00035","DOIUrl":null,"url":null,"abstract":"Untreated dental caries is an important word challenge in human life. In this work, we synthesized polyvinyl alcohol-gum arabic-magnesium oxide nanoparticles new bionanocomposite and evaluated the antibacterial properties of its against Streptococcus mutans biofilm in vitro. For optimization of variables to have the maximum antibacterial property, L9 orthogonal array of Taguchi method was used for design of extraction conditions. The nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy diffraction (EDS), Thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) tests. The FESEM images of nanocomposite inhibit that the nanoparticles are entirely surrounded with polymers chains of matrix and nanoparticles are deposited on the its walls, thus a layered nanocomposite is formed. The sheet width and size range of the nanocomposite was determined between 30-40 and 20-90 nm, respectively. The results showed that the synthesized nanocomposite with conditions of 1 mg/ml PVA, 3 mg/ml AG, and 6 mg/ml MgO (experiment 3), had the strongest antibacterial activity against the Streptococcus mutans bacteria’s biofilm. In this condition, the bacterial survival rate was the lowest at 0.21 CFU/ml and under this optimal conditions could inhibit the activity of Streptococcus mutans bacteria at a rate of 0.09 CFU/ml.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of antibacterial activity of new bionanocomposite based on polyvinyl alcohol(PVA)/arabic gum(AG)/MgO nanoparticles by Taguchi design for mouthwash application\",\"authors\":\"Mohammad Salmani Mobarakeh, A. Moghadam\",\"doi\":\"10.1680/jbibn.21.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Untreated dental caries is an important word challenge in human life. In this work, we synthesized polyvinyl alcohol-gum arabic-magnesium oxide nanoparticles new bionanocomposite and evaluated the antibacterial properties of its against Streptococcus mutans biofilm in vitro. For optimization of variables to have the maximum antibacterial property, L9 orthogonal array of Taguchi method was used for design of extraction conditions. The nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy diffraction (EDS), Thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) tests. The FESEM images of nanocomposite inhibit that the nanoparticles are entirely surrounded with polymers chains of matrix and nanoparticles are deposited on the its walls, thus a layered nanocomposite is formed. The sheet width and size range of the nanocomposite was determined between 30-40 and 20-90 nm, respectively. The results showed that the synthesized nanocomposite with conditions of 1 mg/ml PVA, 3 mg/ml AG, and 6 mg/ml MgO (experiment 3), had the strongest antibacterial activity against the Streptococcus mutans bacteria’s biofilm. In this condition, the bacterial survival rate was the lowest at 0.21 CFU/ml and under this optimal conditions could inhibit the activity of Streptococcus mutans bacteria at a rate of 0.09 CFU/ml.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jbibn.21.00035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of antibacterial activity of new bionanocomposite based on polyvinyl alcohol(PVA)/arabic gum(AG)/MgO nanoparticles by Taguchi design for mouthwash application
Untreated dental caries is an important word challenge in human life. In this work, we synthesized polyvinyl alcohol-gum arabic-magnesium oxide nanoparticles new bionanocomposite and evaluated the antibacterial properties of its against Streptococcus mutans biofilm in vitro. For optimization of variables to have the maximum antibacterial property, L9 orthogonal array of Taguchi method was used for design of extraction conditions. The nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy diffraction (EDS), Thermogravimetric analysis (TGA) and transmission electron microscopy (TEM) tests. The FESEM images of nanocomposite inhibit that the nanoparticles are entirely surrounded with polymers chains of matrix and nanoparticles are deposited on the its walls, thus a layered nanocomposite is formed. The sheet width and size range of the nanocomposite was determined between 30-40 and 20-90 nm, respectively. The results showed that the synthesized nanocomposite with conditions of 1 mg/ml PVA, 3 mg/ml AG, and 6 mg/ml MgO (experiment 3), had the strongest antibacterial activity against the Streptococcus mutans bacteria’s biofilm. In this condition, the bacterial survival rate was the lowest at 0.21 CFU/ml and under this optimal conditions could inhibit the activity of Streptococcus mutans bacteria at a rate of 0.09 CFU/ml.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.