核磁共振蛋白质结构计算和球体相交

Q2 Mathematics
C. Lavor, R. Alves, M. Souza, Luis Aragón José
{"title":"核磁共振蛋白质结构计算和球体相交","authors":"C. Lavor, R. Alves, M. Souza, Luis Aragón José","doi":"10.1515/cmb-2020-0103","DOIUrl":null,"url":null,"abstract":"Abstract Nuclear Magnetic Resonance (NMR) experiments can be used to calculate 3D protein structures and geometric properties of protein molecules allow us to solve the problem iteratively using a combinatorial method, called Branch-and-Prune (BP). The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i − 3, i − 2, i − 1, with radii given by the atomic distances di−3,i, di−2,i, di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i should be represented as interval distances [ d_i-3,i,d¯i-3,i {\\underline{d}_{i - 3,i}},{\\bar d_{i - 3,i}} ], where d_i-3,i≤di-3,i≤d¯i-3,i {\\underline{d}_{i - 3,i}} \\le {d_{i - 3,i}} \\le {\\bar d_{i - 3,i}} . In the literature, an extension of the BP algorithm was proposed to deal with interval distances, where the idea is to sample values from [ d_i-3,i,d¯i-3,i {\\underline{d}_{i - 3,i}},{\\bar d_{i - 3,i}} ]. We present a new method, based on conformal geometric algebra, to reduce the size of [ d_i-3,i,d¯i-3,i {\\underline{d}_{i - 3,i}},{\\bar d_{i - 3,i}} ], before the sampling process. We also compare it with another approach proposed in the literature.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"8 1","pages":"89 - 101"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2020-0103","citationCount":"5","resultStr":"{\"title\":\"NMR Protein Structure Calculation and Sphere Intersections\",\"authors\":\"C. Lavor, R. Alves, M. Souza, Luis Aragón José\",\"doi\":\"10.1515/cmb-2020-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nuclear Magnetic Resonance (NMR) experiments can be used to calculate 3D protein structures and geometric properties of protein molecules allow us to solve the problem iteratively using a combinatorial method, called Branch-and-Prune (BP). The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i − 3, i − 2, i − 1, with radii given by the atomic distances di−3,i, di−2,i, di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i should be represented as interval distances [ d_i-3,i,d¯i-3,i {\\\\underline{d}_{i - 3,i}},{\\\\bar d_{i - 3,i}} ], where d_i-3,i≤di-3,i≤d¯i-3,i {\\\\underline{d}_{i - 3,i}} \\\\le {d_{i - 3,i}} \\\\le {\\\\bar d_{i - 3,i}} . In the literature, an extension of the BP algorithm was proposed to deal with interval distances, where the idea is to sample values from [ d_i-3,i,d¯i-3,i {\\\\underline{d}_{i - 3,i}},{\\\\bar d_{i - 3,i}} ]. We present a new method, based on conformal geometric algebra, to reduce the size of [ d_i-3,i,d¯i-3,i {\\\\underline{d}_{i - 3,i}},{\\\\bar d_{i - 3,i}} ], before the sampling process. We also compare it with another approach proposed in the literature.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"8 1\",\"pages\":\"89 - 101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2020-0103\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2020-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2020-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

摘要核磁共振(NMR)实验可以用于计算蛋白质的三维结构和蛋白质分子的几何性质,使我们能够使用一种称为分支-剪枝(BP)的组合方法迭代求解问题。BP算法的主要步骤是将以原子i−3、i−2、i−1为中心的三个球体与原子距离di−3、i、di−2、i、di−1、i的半径相交,得到原子i的位置。由于核磁共振数据的不确定性,一些距离di−3、i应表示为区间距离[d_i-3,i,d¯i-3,i {\underline{d} _i-3,i, {}}{\bar d_i-3,i]。其中d_i-3,i≤di-3,i≤d¯i-3,i {}}{\underline{d} _i-3,i {}}\le d_i-3,i {{}}\le{\bar d_i-3,i。在文献中,提出了一种BP算法的扩展来处理间隔距离,其思想是从[d_i-3,i,d¯i-3,i {}}{\underline{d} _i-3,i, {}}{\bar d_i-3,i]中采样值。提出了一种基于共形几何代数的方法,在采样前减小[d_i-3,i,d¯i-3,i {}}{\underline{d} _i-3,i, {}}{\bar d_i-3,i]的大小。我们还将其与文献中提出的另一种方法进行了比较。{}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NMR Protein Structure Calculation and Sphere Intersections
Abstract Nuclear Magnetic Resonance (NMR) experiments can be used to calculate 3D protein structures and geometric properties of protein molecules allow us to solve the problem iteratively using a combinatorial method, called Branch-and-Prune (BP). The main step of BP algorithm is to intersect three spheres centered at the positions for atoms i − 3, i − 2, i − 1, with radii given by the atomic distances di−3,i, di−2,i, di−1,i, respectively, to obtain the position for atom i. Because of uncertainty in NMR data, some of the distances di−3,i should be represented as interval distances [ d_i-3,i,d¯i-3,i {\underline{d}_{i - 3,i}},{\bar d_{i - 3,i}} ], where d_i-3,i≤di-3,i≤d¯i-3,i {\underline{d}_{i - 3,i}} \le {d_{i - 3,i}} \le {\bar d_{i - 3,i}} . In the literature, an extension of the BP algorithm was proposed to deal with interval distances, where the idea is to sample values from [ d_i-3,i,d¯i-3,i {\underline{d}_{i - 3,i}},{\bar d_{i - 3,i}} ]. We present a new method, based on conformal geometric algebra, to reduce the size of [ d_i-3,i,d¯i-3,i {\underline{d}_{i - 3,i}},{\bar d_{i - 3,i}} ], before the sampling process. We also compare it with another approach proposed in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信