{"title":"具有一个素数和五个素数立方的丢芬图方程的小素数解","authors":"Weiping Li","doi":"10.7169/FACM/1874","DOIUrl":null,"url":null,"abstract":"Let $a_1,\\cdots,a_6$ be non-zero integers satisfying $(a_i,a_j)=1, 1\\leq i \\lt j \\leq 6$ and $b$ be any integer. For the Diophantine equation $a_1p_1+a_2p_2^3+\\cdots+a_6p_6^3=b$ we prove that (i) if all $a_1,\\cdots,a_6$ are positive and $b\\gg \\max \\{|a_j|\\}^{34+\\varepsilon}$, then the equation is soluble in primes $p_j$, and (ii) if $a_1,\\cdots,a_6$ are not all of the same sign, then the equation has prime solutions satisfying $\\max \\{ p_1,p_2^3,\\cdots,p_6^3 \\}\\ll |b|+\\max \\{|a_j|\\}^{33+\\varepsilon}$, where the implied constants depend only on $\\varepsilon$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small prime solutions of a Diophantine equation with one prime and five cubes of primes\",\"authors\":\"Weiping Li\",\"doi\":\"10.7169/FACM/1874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $a_1,\\\\cdots,a_6$ be non-zero integers satisfying $(a_i,a_j)=1, 1\\\\leq i \\\\lt j \\\\leq 6$ and $b$ be any integer. For the Diophantine equation $a_1p_1+a_2p_2^3+\\\\cdots+a_6p_6^3=b$ we prove that (i) if all $a_1,\\\\cdots,a_6$ are positive and $b\\\\gg \\\\max \\\\{|a_j|\\\\}^{34+\\\\varepsilon}$, then the equation is soluble in primes $p_j$, and (ii) if $a_1,\\\\cdots,a_6$ are not all of the same sign, then the equation has prime solutions satisfying $\\\\max \\\\{ p_1,p_2^3,\\\\cdots,p_6^3 \\\\}\\\\ll |b|+\\\\max \\\\{|a_j|\\\\}^{33+\\\\varepsilon}$, where the implied constants depend only on $\\\\varepsilon$.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/FACM/1874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/FACM/1874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Small prime solutions of a Diophantine equation with one prime and five cubes of primes
Let $a_1,\cdots,a_6$ be non-zero integers satisfying $(a_i,a_j)=1, 1\leq i \lt j \leq 6$ and $b$ be any integer. For the Diophantine equation $a_1p_1+a_2p_2^3+\cdots+a_6p_6^3=b$ we prove that (i) if all $a_1,\cdots,a_6$ are positive and $b\gg \max \{|a_j|\}^{34+\varepsilon}$, then the equation is soluble in primes $p_j$, and (ii) if $a_1,\cdots,a_6$ are not all of the same sign, then the equation has prime solutions satisfying $\max \{ p_1,p_2^3,\cdots,p_6^3 \}\ll |b|+\max \{|a_j|\}^{33+\varepsilon}$, where the implied constants depend only on $\varepsilon$.