多值Usco函数与Stegall空间

D. Narváez
{"title":"多值Usco函数与Stegall空间","authors":"D. Narváez","doi":"10.25100/RC.V22I1.7100","DOIUrl":null,"url":null,"abstract":"In this article we consider the study of the -differentiability and -ifferentiability for convex functions, not only in the general context of topological vector spaces (), but also in the context of Banach spaces. We study a special class of Banach spaces named Stegall spaces, denoted by , which is located between the Asplund -spaces and Asplund -spaces (-Asplund). We present a self-contained proof of the Stegall theorem, without appealing to the huge number of references required in some proofs available in the classical literature (4). This requires a thorough study of a very special type of multivalued functions between Banach spaces known as usco multi-functions.","PeriodicalId":33368,"journal":{"name":"Revista de Ciencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivalued Usco Functions and Stegall Spaces\",\"authors\":\"D. Narváez\",\"doi\":\"10.25100/RC.V22I1.7100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider the study of the -differentiability and -ifferentiability for convex functions, not only in the general context of topological vector spaces (), but also in the context of Banach spaces. We study a special class of Banach spaces named Stegall spaces, denoted by , which is located between the Asplund -spaces and Asplund -spaces (-Asplund). We present a self-contained proof of the Stegall theorem, without appealing to the huge number of references required in some proofs available in the classical literature (4). This requires a thorough study of a very special type of multivalued functions between Banach spaces known as usco multi-functions.\",\"PeriodicalId\":33368,\"journal\":{\"name\":\"Revista de Ciencias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Ciencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25100/RC.V22I1.7100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Ciencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25100/RC.V22I1.7100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文不仅在拓扑向量空间()的一般背景下,而且在Banach空间的背景下,研究了凸函数的-可微性和-可微性。我们研究了一类特殊的Banach空间,称为Stegall空间,表示为,它位于Asplund -空间和Asplund -空间(-Asplund)之间。我们给出了Stegall定理的一个自包含证明,而不需要像经典文献中提供的一些证明那样需要大量的参考文献(4)。这需要对Banach空间之间的一种非常特殊的多值函数进行深入的研究,这种多值函数被称为usco多函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivalued Usco Functions and Stegall Spaces
In this article we consider the study of the -differentiability and -ifferentiability for convex functions, not only in the general context of topological vector spaces (), but also in the context of Banach spaces. We study a special class of Banach spaces named Stegall spaces, denoted by , which is located between the Asplund -spaces and Asplund -spaces (-Asplund). We present a self-contained proof of the Stegall theorem, without appealing to the huge number of references required in some proofs available in the classical literature (4). This requires a thorough study of a very special type of multivalued functions between Banach spaces known as usco multi-functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
32 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信