Subrata Barman, Kritesh Kumar Gupta, S. Kushari, S. Dey
{"title":"双层多孔轴瓦滑动轴承的随机性能——一种机器学习方法","authors":"Subrata Barman, Kritesh Kumar Gupta, S. Kushari, S. Dey","doi":"10.1115/1.4062487","DOIUrl":null,"url":null,"abstract":"\n This investigation presents the deterministic and stochastic responses of the journal bearing with two-layered porous bush. Pressure equations in the porous layers and modified Reynolds equations in the clearance region are governed by the finite difference method (FDM). Stochastic analysis based on Monte Carlo Simulation (MCS) is used to investigate the effect of random variation in input parameters caused by uncertain operating conditions, improper installations, and manufacturing imperfections. In order to enhance computational efficiency, this probabilistic study is conducted in conjunction with the machine learning model (ML) based on the Support Vector Machine (SVM) algorithm. The uncertainty in the bearing responses is presented in the form of the probability density function (PDF), considering both the independent and combined effect of the stochastically varied input parameters. Graphical illustration of the data-driven sensitivity represents the relative significance of each input parameter affecting the steady-state responses of the journal bearing with two-layered porous bush. The findings of the present study reveal that the stochastic variations in the input parameters have a profound influence on the operational characteristics of the porous bearing. The outcome of the present study will be helpful in deciding the operational regime of the porous bearing under the practically-relevant stochastic environment.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic performance of journal bearing with two-layered porous bush- A machine learning approach\",\"authors\":\"Subrata Barman, Kritesh Kumar Gupta, S. Kushari, S. Dey\",\"doi\":\"10.1115/1.4062487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This investigation presents the deterministic and stochastic responses of the journal bearing with two-layered porous bush. Pressure equations in the porous layers and modified Reynolds equations in the clearance region are governed by the finite difference method (FDM). Stochastic analysis based on Monte Carlo Simulation (MCS) is used to investigate the effect of random variation in input parameters caused by uncertain operating conditions, improper installations, and manufacturing imperfections. In order to enhance computational efficiency, this probabilistic study is conducted in conjunction with the machine learning model (ML) based on the Support Vector Machine (SVM) algorithm. The uncertainty in the bearing responses is presented in the form of the probability density function (PDF), considering both the independent and combined effect of the stochastically varied input parameters. Graphical illustration of the data-driven sensitivity represents the relative significance of each input parameter affecting the steady-state responses of the journal bearing with two-layered porous bush. The findings of the present study reveal that the stochastic variations in the input parameters have a profound influence on the operational characteristics of the porous bearing. The outcome of the present study will be helpful in deciding the operational regime of the porous bearing under the practically-relevant stochastic environment.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062487\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Stochastic performance of journal bearing with two-layered porous bush- A machine learning approach
This investigation presents the deterministic and stochastic responses of the journal bearing with two-layered porous bush. Pressure equations in the porous layers and modified Reynolds equations in the clearance region are governed by the finite difference method (FDM). Stochastic analysis based on Monte Carlo Simulation (MCS) is used to investigate the effect of random variation in input parameters caused by uncertain operating conditions, improper installations, and manufacturing imperfections. In order to enhance computational efficiency, this probabilistic study is conducted in conjunction with the machine learning model (ML) based on the Support Vector Machine (SVM) algorithm. The uncertainty in the bearing responses is presented in the form of the probability density function (PDF), considering both the independent and combined effect of the stochastically varied input parameters. Graphical illustration of the data-driven sensitivity represents the relative significance of each input parameter affecting the steady-state responses of the journal bearing with two-layered porous bush. The findings of the present study reveal that the stochastic variations in the input parameters have a profound influence on the operational characteristics of the porous bearing. The outcome of the present study will be helpful in deciding the operational regime of the porous bearing under the practically-relevant stochastic environment.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints