关于递增连续奇异函数具有非零有限导数的点集

IF 0.1 Q4 MATHEMATICS
Marta Kossaczká, L. Zajícek
{"title":"关于递增连续奇异函数具有非零有限导数的点集","authors":"Marta Kossaczká, L. Zajícek","doi":"10.14321/realanalexch.47.2.1638769133","DOIUrl":null,"url":null,"abstract":"Sanchez, Viader, Paradis and Carrillo (2016) proved that there exists an increasing continuous singular function $f$ on $[0,1]$ such that the set $A_f$ of points where $f$ has a nonzero finite derivative has Hausdorff dimension 1 in each subinterval of $[0,1]$. We prove a stronger (and optimal) result showing that a set $A_f$ as above can contain any prescribed $F_{\\sigma}$ null subset of $[0,1]$.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Set of Points at which an Increasing Continuous Singular Function has a Nonzero Finite Derivative\",\"authors\":\"Marta Kossaczká, L. Zajícek\",\"doi\":\"10.14321/realanalexch.47.2.1638769133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sanchez, Viader, Paradis and Carrillo (2016) proved that there exists an increasing continuous singular function $f$ on $[0,1]$ such that the set $A_f$ of points where $f$ has a nonzero finite derivative has Hausdorff dimension 1 in each subinterval of $[0,1]$. We prove a stronger (and optimal) result showing that a set $A_f$ as above can contain any prescribed $F_{\\\\sigma}$ null subset of $[0,1]$.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.47.2.1638769133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.2.1638769133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Sanchez,Viader,Paradis和Carrillo(2016)证明了在$[0,1]$上存在一个递增的连续奇异函数$f$,使得$f$具有非零有限导数的点的集合$A_f$在$[0.1]$的每个子区间中具有Hausdorff维数1。我们证明了一个更强(也是最优)的结果,表明如上所述的集合$a_f$可以包含$[0,1]$的任何规定的$f_{\sigma}$null子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Set of Points at which an Increasing Continuous Singular Function has a Nonzero Finite Derivative
Sanchez, Viader, Paradis and Carrillo (2016) proved that there exists an increasing continuous singular function $f$ on $[0,1]$ such that the set $A_f$ of points where $f$ has a nonzero finite derivative has Hausdorff dimension 1 in each subinterval of $[0,1]$. We prove a stronger (and optimal) result showing that a set $A_f$ as above can contain any prescribed $F_{\sigma}$ null subset of $[0,1]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信