网络流量聚合与随机场的各向异性缩放

IF 0.4 Q4 STATISTICS & PROBABILITY
R. Leipus, Vytaute Pilipauskaite, D. Surgailis
{"title":"网络流量聚合与随机场的各向异性缩放","authors":"R. Leipus, Vytaute Pilipauskaite, D. Surgailis","doi":"10.1090/tpms/1188","DOIUrl":null,"url":null,"abstract":"<p>We discuss joint spatial-temporal scaling limits of sums <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript lamda comma gamma\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{\\lambda ,\\gamma }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> (indexed by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis x comma y right-parenthesis element-of double-struck upper R Subscript plus Superscript 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msubsup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(x,y) \\in \\mathbb {R}^2_+</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) of large number <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis lamda Superscript gamma Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>γ<!-- γ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(\\lambda ^{\\gamma })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of independent copies of integrated input process <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X equals StartSet upper X left-parenthesis t right-parenthesis comma t element-of double-struck upper R EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X = \\{X(t), t \\in \\mathbb {R}\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> at time scale <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for any given <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\gamma >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We consider two classes of inputs <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>: (I) Poisson shot-noise with (random) pulse process, and (II) regenerative process with random pulse process and regeneration times following a heavy-tailed stationary renewal process. The above classes include several queueing and network traffic models for which joint spatial-temporal limits were previously discussed in the literature. In both cases (I) and (II) we find simple conditions on the input process in order that the normalized random fields <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript lamda comma gamma\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>γ<!-- γ --></mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{\\lambda ,\\gamma }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> tend to an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha\">\n <mml:semantics>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\alpha</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-stable Lévy sheet <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 greater-than alpha greater-than 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(1> \\alpha >2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma greater-than gamma 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\gamma > \\gamma _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and to a fractional Brownian sheet if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma greater-than gamma 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\gamma > \\gamma _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for some <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma 0 greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\gamma _0>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also prove an ‘intermediate’ limit for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"gamma equals gamma 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mi>γ<!-- γ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\gamma = \\gamma _0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our results extend the previous works of R. Gaigalas and I. Kaj [Bernoulli 9 (2003), no. 4, 671–703] and T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman [Ann. Appl. Probab. 12 (2002), no. 1, 23–68] and other papers to more general and new input processes.</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aggregation of network traffic and anisotropic scaling of random fields\",\"authors\":\"R. Leipus, Vytaute Pilipauskaite, D. Surgailis\",\"doi\":\"10.1090/tpms/1188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss joint spatial-temporal scaling limits of sums <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript lamda comma gamma\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_{\\\\lambda ,\\\\gamma }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> (indexed by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis x comma y right-parenthesis element-of double-struck upper R Subscript plus Superscript 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>y</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msubsup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mo>+</mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:msubsup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(x,y) \\\\in \\\\mathbb {R}^2_+</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>) of large number <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis lamda Superscript gamma Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>γ<!-- γ --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(\\\\lambda ^{\\\\gamma })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of independent copies of integrated input process <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X equals StartSet upper X left-parenthesis t right-parenthesis comma t element-of double-struck upper R EndSet\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X = \\\\{X(t), t \\\\in \\\\mathbb {R}\\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> at time scale <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for any given <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma >0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We consider two classes of inputs <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>: (I) Poisson shot-noise with (random) pulse process, and (II) regenerative process with random pulse process and regeneration times following a heavy-tailed stationary renewal process. The above classes include several queueing and network traffic models for which joint spatial-temporal limits were previously discussed in the literature. In both cases (I) and (II) we find simple conditions on the input process in order that the normalized random fields <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript lamda comma gamma\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_{\\\\lambda ,\\\\gamma }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> tend to an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha\\\">\\n <mml:semantics>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-stable Lévy sheet <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis 1 greater-than alpha greater-than 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>></mml:mo>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(1> \\\\alpha >2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma greater-than gamma 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma > \\\\gamma _0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and to a fractional Brownian sheet if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma greater-than gamma 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma > \\\\gamma _0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for some <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma 0 greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma _0>0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We also prove an ‘intermediate’ limit for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"gamma equals gamma 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mi>γ<!-- γ --></mml:mi>\\n <mml:mn>0</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\gamma = \\\\gamma _0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our results extend the previous works of R. Gaigalas and I. Kaj [Bernoulli 9 (2003), no. 4, 671–703] and T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman [Ann. Appl. Probab. 12 (2002), no. 1, 23–68] and other papers to more general and new input processes.</p>\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们讨论了和A λ, γ A_ {\lambda, \gamma(由(x,y)∈R + 2 (x,y)}\in\mathbb R{^2_+)的大数O(λ γ) O(}\lambda ^ {\gamma)的独立拷贝的集成输入过程x =} x (t), t∈R {x = {x (t)},t \in\mathbb R{}在时间尺度λ }\lambda,对于任意给定的γ >0 \gamma >0。我们考虑两类输入X X:(I)带(随机)脉冲过程的泊松射击噪声,以及(II)带随机脉冲过程和重尾平稳更新过程后再生时间的再生过程。上述类别包括几个排队和网络流量模型,其中联合时空限制已在先前的文献中讨论过。在(I)和(II)两种情况下,我们找到了输入过程的简单条件,以便归一化随机场A λ, γ A_ {\lambda, \gamma趋向于}α \alpha稳定的lsamvy表(1> α >2) (1> \alpha >2),如果γ > γ 0 \gamma > \gamma _0,如果γ > γ 0 \gamma > \gamma _0,对于某些γ 0>0 \gamma _0>0。我们还证明了γ = γ 0 \gamma = \gamma _0的一个“中间”极限。我们的结果扩展了R. Gaigalas和I. Kaj [Bernoulli 9 (2003), no. 5]之前的工作。[j] .中国农业科学,2014。苹果。12 (2002), no。[1,23 - 68]和其他论文,更一般的和新的输入过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregation of network traffic and anisotropic scaling of random fields

We discuss joint spatial-temporal scaling limits of sums A λ , γ A_{\lambda ,\gamma } (indexed by ( x , y ) R + 2 (x,y) \in \mathbb {R}^2_+ ) of large number O ( λ γ ) O(\lambda ^{\gamma }) of independent copies of integrated input process X = { X ( t ) , t R } X = \{X(t), t \in \mathbb {R}\} at time scale λ \lambda , for any given γ > 0 \gamma >0 . We consider two classes of inputs X X : (I) Poisson shot-noise with (random) pulse process, and (II) regenerative process with random pulse process and regeneration times following a heavy-tailed stationary renewal process. The above classes include several queueing and network traffic models for which joint spatial-temporal limits were previously discussed in the literature. In both cases (I) and (II) we find simple conditions on the input process in order that the normalized random fields A λ , γ A_{\lambda ,\gamma } tend to an α \alpha -stable Lévy sheet ( 1 > α > 2 ) (1> \alpha >2) if γ > γ 0 \gamma > \gamma _0 , and to a fractional Brownian sheet if γ > γ 0 \gamma > \gamma _0 , for some γ 0 > 0 \gamma _0>0 . We also prove an ‘intermediate’ limit for γ = γ 0 \gamma = \gamma _0 . Our results extend the previous works of R. Gaigalas and I. Kaj [Bernoulli 9 (2003), no. 4, 671–703] and T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman [Ann. Appl. Probab. 12 (2002), no. 1, 23–68] and other papers to more general and new input processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信