{"title":"长相关结构下变系数动态模型的鲁棒小波估计","authors":"Xingcai Zhou, Shaogao Lv","doi":"10.1142/S0219530521500032","DOIUrl":null,"url":null,"abstract":"This paper considers a class of robust estimation problems for varying coefficient dynamic models via wavelet techniques, which can adapt to local features of the underlying functions and has less restriction to the smoothness of the functions. The convergence rates and asymptotic distributions of the robust wavelet-based estimator are established when the design variables are stationary short-range dependent (SRD) and the errors are long-range dependent (LRD). Particularly, a rate of convergence [Formula: see text] in terms of estimation consistency can be achievable when the true components satisfy certain smoothness for a LRD process. Furthermore, an asymptotic property of the proposed estimator is given to indicate the confidence level of our proposed method for varying coefficient models with LRD.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":"1 1","pages":"1-25"},"PeriodicalIF":2.0000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust wavelet-based estimation for varying coefficient dynamic models under long-dependent structures\",\"authors\":\"Xingcai Zhou, Shaogao Lv\",\"doi\":\"10.1142/S0219530521500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a class of robust estimation problems for varying coefficient dynamic models via wavelet techniques, which can adapt to local features of the underlying functions and has less restriction to the smoothness of the functions. The convergence rates and asymptotic distributions of the robust wavelet-based estimator are established when the design variables are stationary short-range dependent (SRD) and the errors are long-range dependent (LRD). Particularly, a rate of convergence [Formula: see text] in terms of estimation consistency can be achievable when the true components satisfy certain smoothness for a LRD process. Furthermore, an asymptotic property of the proposed estimator is given to indicate the confidence level of our proposed method for varying coefficient models with LRD.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\"1 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219530521500032\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219530521500032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Robust wavelet-based estimation for varying coefficient dynamic models under long-dependent structures
This paper considers a class of robust estimation problems for varying coefficient dynamic models via wavelet techniques, which can adapt to local features of the underlying functions and has less restriction to the smoothness of the functions. The convergence rates and asymptotic distributions of the robust wavelet-based estimator are established when the design variables are stationary short-range dependent (SRD) and the errors are long-range dependent (LRD). Particularly, a rate of convergence [Formula: see text] in terms of estimation consistency can be achievable when the true components satisfy certain smoothness for a LRD process. Furthermore, an asymptotic property of the proposed estimator is given to indicate the confidence level of our proposed method for varying coefficient models with LRD.
期刊介绍:
Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.