塌缩平均曲率流的古老解

IF 1.3 1区 数学 Q1 MATHEMATICS
T. Bourni, Mathew T. Langford, G. Tinaglia
{"title":"塌缩平均曲率流的古老解","authors":"T. Bourni, Mathew T. Langford, G. Tinaglia","doi":"10.4310/jdg/1632506300","DOIUrl":null,"url":null,"abstract":"We construct a compact, convex ancient solution of mean curvature flow in $\\mathbb{R}^{n+1}$ with $O(1) \\times O(n)$ symmetry that lies in a slab of width $\\pi$. We provide detailed asymptotics for this solution and show that, up to rigid motions, it is the only compact, convex, $O(n)$-invariant ancient solution that lies in a slab of width $\\pi$ and in no smaller slab.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Collapsing ancient solutions of mean curvature flow\",\"authors\":\"T. Bourni, Mathew T. Langford, G. Tinaglia\",\"doi\":\"10.4310/jdg/1632506300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a compact, convex ancient solution of mean curvature flow in $\\\\mathbb{R}^{n+1}$ with $O(1) \\\\times O(n)$ symmetry that lies in a slab of width $\\\\pi$. We provide detailed asymptotics for this solution and show that, up to rigid motions, it is the only compact, convex, $O(n)$-invariant ancient solution that lies in a slab of width $\\\\pi$ and in no smaller slab.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1632506300\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1632506300","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33

摘要

我们构造了$\mathbb{R}^{n+1}$中具有$O(1) \乘以O(n)$对称性的平均曲率流的紧凑凸古解,该解位于宽度$\pi$的板上。我们提供了该解的详细渐近性,并证明了,直到刚性运动,它是唯一紧致的,凸的,$O(n)$不变的古解,它位于宽度$\pi$的平板上,并且不小于平板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collapsing ancient solutions of mean curvature flow
We construct a compact, convex ancient solution of mean curvature flow in $\mathbb{R}^{n+1}$ with $O(1) \times O(n)$ symmetry that lies in a slab of width $\pi$. We provide detailed asymptotics for this solution and show that, up to rigid motions, it is the only compact, convex, $O(n)$-invariant ancient solution that lies in a slab of width $\pi$ and in no smaller slab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信