{"title":"相关逻辑E的两个无穷大前极大扩张序列","authors":"Lidia Typańska-Czajka","doi":"10.18778/0138-0680.48.1.03","DOIUrl":null,"url":null,"abstract":"The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E\",\"authors\":\"Lidia Typańska-Czajka\",\"doi\":\"10.18778/0138-0680.48.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.48.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.48.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Two Infinite Sequences of Pre-Maximal Extensions of the Relevant Logic E
The only maximal extension of the logic of relevant entailment E is the classical logic CL. A logic L ⊆ [E,CL] called pre-maximal if and only if L is a coatom in the interval [E,CL]. We present two denumerable infinite sequences of premaximal extensions of the logic E. Note that for the relevant logic R there exist exactly three pre-maximal logics, i.e. coatoms in the interval [R,CL].