用加权树逼近Nagata维数为零的空间

IF 0.6 Q3 MATHEMATICS
Giuliano Basso, H. Sidler
{"title":"用加权树逼近Nagata维数为零的空间","authors":"Giuliano Basso, H. Sidler","doi":"10.1215/00192082-10414720","DOIUrl":null,"url":null,"abstract":"We prove that if a metric space $X$ has Nagata dimension zero with constant $c$, then there exists a dense subset of $X$ that is $8c$-bilipschitz equivalent to a weighted tree. The factor $8$ is the best possible if $c=1$, that is, if $X$ is an ultrametric space. This yields a new proof of a result of Chan, Xia, Konjevod and Richa. Moreover, as an application, we also obtain quantitative versions of certain metric embedding and Lipschitz extension results of Lang and Schlichenmaier. Finally, we prove a variant of our main theorem for $0$-hyperbolic proper metric spaces. This generalizes a result of Gupta.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximating spaces of Nagata dimension zero by weighted trees\",\"authors\":\"Giuliano Basso, H. Sidler\",\"doi\":\"10.1215/00192082-10414720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if a metric space $X$ has Nagata dimension zero with constant $c$, then there exists a dense subset of $X$ that is $8c$-bilipschitz equivalent to a weighted tree. The factor $8$ is the best possible if $c=1$, that is, if $X$ is an ultrametric space. This yields a new proof of a result of Chan, Xia, Konjevod and Richa. Moreover, as an application, we also obtain quantitative versions of certain metric embedding and Lipschitz extension results of Lang and Schlichenmaier. Finally, we prove a variant of our main theorem for $0$-hyperbolic proper metric spaces. This generalizes a result of Gupta.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10414720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10414720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了如果度量空间$X$具有常数为$c$的Nagata维数为零,则存在$X$的稠密子集,该子集等价于加权树$8c$-bilipschitz。如果$c=1$,也就是说,如果$X$是超度量空间,则因子$8$是最好的。这为Chan、Xia、Konjevod和Richa的结果提供了新的证明。此外,作为一个应用,我们还得到了Lang和Schlichenmaier的某些度量嵌入和Lipschitz扩展结果的定量版本。最后,我们证明了$0$-双曲真度量空间主定理的一个变体。这概括了古普塔的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating spaces of Nagata dimension zero by weighted trees
We prove that if a metric space $X$ has Nagata dimension zero with constant $c$, then there exists a dense subset of $X$ that is $8c$-bilipschitz equivalent to a weighted tree. The factor $8$ is the best possible if $c=1$, that is, if $X$ is an ultrametric space. This yields a new proof of a result of Chan, Xia, Konjevod and Richa. Moreover, as an application, we also obtain quantitative versions of certain metric embedding and Lipschitz extension results of Lang and Schlichenmaier. Finally, we prove a variant of our main theorem for $0$-hyperbolic proper metric spaces. This generalizes a result of Gupta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信