沿方向曲线的曲面的法线可展曲面

IF 0.3 Q4 MATHEMATICS
Rashad Abdel-Baky Abdel-Sattar, Y. Ünlütürk
{"title":"沿方向曲线的曲面的法线可展曲面","authors":"Rashad Abdel-Baky Abdel-Sattar, Y. Ünlütürk","doi":"10.22342/JIMS.26.3.872.319-333","DOIUrl":null,"url":null,"abstract":"We construct a developable surface normal to a surface along a curve on the surface. As differs from the work Hananoi, we choose the curve as the normal direction curve on which the new surface is formed in Euclidean space. We obtain some results about the uniqueness and the singularities of such developable surfaces. We also give two invariants of curves on a surface which characterize singularities.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"26 1","pages":"319-333"},"PeriodicalIF":0.3000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Normal Developable Surfaces of A Surface Along A Direction Curve\",\"authors\":\"Rashad Abdel-Baky Abdel-Sattar, Y. Ünlütürk\",\"doi\":\"10.22342/JIMS.26.3.872.319-333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a developable surface normal to a surface along a curve on the surface. As differs from the work Hananoi, we choose the curve as the normal direction curve on which the new surface is formed in Euclidean space. We obtain some results about the uniqueness and the singularities of such developable surfaces. We also give two invariants of curves on a surface which characterize singularities.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"319-333\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.26.3.872.319-333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.26.3.872.319-333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们在曲面上沿一条曲线构造一个垂直于曲面的可展曲面。与Hananoi的工作不同,我们选择曲线作为在欧几里德空间中形成新曲面的法线方向曲线。得到了该类可展曲面的唯一性和奇异性的一些结果。我们还给出了曲面上曲线的两个不变量,它们表示奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal Developable Surfaces of A Surface Along A Direction Curve
We construct a developable surface normal to a surface along a curve on the surface. As differs from the work Hananoi, we choose the curve as the normal direction curve on which the new surface is formed in Euclidean space. We obtain some results about the uniqueness and the singularities of such developable surfaces. We also give two invariants of curves on a surface which characterize singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信