具有相容导数的三次非线性分数阶Schrödinger方程及其新的行波解

IF 0.8 Q2 MATHEMATICS
Hami Gündoğdu, Ömer Faruk Gözükɩzɩl
{"title":"具有相容导数的三次非线性分数阶Schrödinger方程及其新的行波解","authors":"Hami Gündoğdu, Ömer Faruk Gözükɩzɩl","doi":"10.17512/jamcm.2021.2.03","DOIUrl":null,"url":null,"abstract":". In the present paper, the fractional-order cubic nonlinear Schr¨odinger equation is considered. The Schr¨odinger equation with time and space fractional derivative is studied at the same time. Different types of travelling wave solutions including the kink solution, soliton solution, periodic solution, and singular solution for the mentioned equation are obtained by using the Jacobi elliptic functions expansion method. It is shown that the solutions turn into the exact solutions when the fractional orders go to 1. This method can be relied on gaining the solutions to time or space fractional order partial differential equations as well as ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cubic nonlinear fractional Schrödinger equation with conformable derivative and its new travelling wave solutions\",\"authors\":\"Hami Gündoğdu, Ömer Faruk Gözükɩzɩl\",\"doi\":\"10.17512/jamcm.2021.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the present paper, the fractional-order cubic nonlinear Schr¨odinger equation is considered. The Schr¨odinger equation with time and space fractional derivative is studied at the same time. Different types of travelling wave solutions including the kink solution, soliton solution, periodic solution, and singular solution for the mentioned equation are obtained by using the Jacobi elliptic functions expansion method. It is shown that the solutions turn into the exact solutions when the fractional orders go to 1. This method can be relied on gaining the solutions to time or space fractional order partial differential equations as well as ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2021.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2021.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了分数阶三次非线性Schr¨odinger方程。同时研究了具有时间和空间分数导数的Schr¨odinger方程。利用Jacobi椭圆函数展开方法,得到了上述方程的不同类型的行波解,包括扭结解、孤立子解、周期解和奇异解。结果表明,当分数阶为1时,解转化为精确解。该方法既可用于求解时间或空间分数阶偏微分方程,也可用于求解常微分方程。在整个工作中,分数导数是在保形意义上给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubic nonlinear fractional Schrödinger equation with conformable derivative and its new travelling wave solutions
. In the present paper, the fractional-order cubic nonlinear Schr¨odinger equation is considered. The Schr¨odinger equation with time and space fractional derivative is studied at the same time. Different types of travelling wave solutions including the kink solution, soliton solution, periodic solution, and singular solution for the mentioned equation are obtained by using the Jacobi elliptic functions expansion method. It is shown that the solutions turn into the exact solutions when the fractional orders go to 1. This method can be relied on gaining the solutions to time or space fractional order partial differential equations as well as ordinary ones. Throughout this work, the fractional derivative is given in a conformable sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信