{"title":"结构支撑对连续倒塌发生的影响","authors":"Emad Raminfar, Ardavan Izadi","doi":"10.56748/ejse.23448","DOIUrl":null,"url":null,"abstract":"Statistics of human losses and financial casualties induced progressive collapse, as one of the new and modern concepts in the field of civil engineering, have doubled the importance of having knowledge about this phenomenon and strategies to reduce its effect. Progressive collapse starts with a local failure with loss of local load-carrying capacity of a small portion of the structure and spreads throughout the structure from element to element. These consecutive failures may cause the collapse of either the entire structure or a major part of it. This paper studies the effect of adding a bracing system to the steel moment frames designed for seismic loads through a nonlinear dynamic method according to GSA-2003 and UFC-4-023-03 criteria. The study was conducted using computational simulation of building models with two different elevations of three and six floors located in a moderate seismicity region. The simulation results showed higher resistance against the progressive collapse of the structure in the braced steel moment frames and less sensitivity to the removal of the column in the braced spans in comparison to the spans without bracing. The prediction of possible progressive collapse in the UFC-4-023-03 criterion is more conservative than the GSA-2003 criterion. Although, generally there is no significant difference between the analysis results of these two criteria.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Structural Bracing on the Progressive Collapse Occurrence\",\"authors\":\"Emad Raminfar, Ardavan Izadi\",\"doi\":\"10.56748/ejse.23448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistics of human losses and financial casualties induced progressive collapse, as one of the new and modern concepts in the field of civil engineering, have doubled the importance of having knowledge about this phenomenon and strategies to reduce its effect. Progressive collapse starts with a local failure with loss of local load-carrying capacity of a small portion of the structure and spreads throughout the structure from element to element. These consecutive failures may cause the collapse of either the entire structure or a major part of it. This paper studies the effect of adding a bracing system to the steel moment frames designed for seismic loads through a nonlinear dynamic method according to GSA-2003 and UFC-4-023-03 criteria. The study was conducted using computational simulation of building models with two different elevations of three and six floors located in a moderate seismicity region. The simulation results showed higher resistance against the progressive collapse of the structure in the braced steel moment frames and less sensitivity to the removal of the column in the braced spans in comparison to the spans without bracing. The prediction of possible progressive collapse in the UFC-4-023-03 criterion is more conservative than the GSA-2003 criterion. Although, generally there is no significant difference between the analysis results of these two criteria.\",\"PeriodicalId\":52513,\"journal\":{\"name\":\"Electronic Journal of Structural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56748/ejse.23448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.23448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effects of Structural Bracing on the Progressive Collapse Occurrence
Statistics of human losses and financial casualties induced progressive collapse, as one of the new and modern concepts in the field of civil engineering, have doubled the importance of having knowledge about this phenomenon and strategies to reduce its effect. Progressive collapse starts with a local failure with loss of local load-carrying capacity of a small portion of the structure and spreads throughout the structure from element to element. These consecutive failures may cause the collapse of either the entire structure or a major part of it. This paper studies the effect of adding a bracing system to the steel moment frames designed for seismic loads through a nonlinear dynamic method according to GSA-2003 and UFC-4-023-03 criteria. The study was conducted using computational simulation of building models with two different elevations of three and six floors located in a moderate seismicity region. The simulation results showed higher resistance against the progressive collapse of the structure in the braced steel moment frames and less sensitivity to the removal of the column in the braced spans in comparison to the spans without bracing. The prediction of possible progressive collapse in the UFC-4-023-03 criterion is more conservative than the GSA-2003 criterion. Although, generally there is no significant difference between the analysis results of these two criteria.
期刊介绍:
The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.