{"title":"AZ91D和AM60B合金熔体在不同气氛下动态形成早期表面膜的表征:比较研究","authors":"A. Mirak","doi":"10.22068/IJMSE.1570","DOIUrl":null,"url":null,"abstract":"In the present study, the early stages of the surface oxidation and fluoridation of liquid AZ91D and AM60B alloys under ultra-high purity (UHP) argon, dry air, and air mixed with two different protective fluorine-bearing gases were studied. The chemical composition, morphology and thickness of the surface films formed inside the trapped bubbles were characterized by SEM equipped with EDS analysis. It is found that the molten AM60B alloy is more sensitive to impurities under UHP argon gas than AZ91D alloy. Under dry air atmosphere, the entire surface of molten AZ91D alloy is covered with an oxide layer and thinner thickness than the surface film formed on AM60B alloy which has rough surface exhibiting granular growth in later stages of oxidation. The EDS analysis shows that the film chemistry is mainly composed of Mg, Al and O elements. Under fluorine-bearing gas/air mixtures with either SF6 or HFC-R134a at 3.5%vol., a fresh surface film formed with a flat and dense morphology with a uniform thickness consisting of Mg, F, Al and O elements. It is observed that there is a lower O:F intensity ratio in the surface film formed on the molten AZ91D alloy under 1,1,1,2-tetra-fluoroethane (HFC-R134a) mixed with dry air compared to the AM60B alloy under both air/ R134a and air/SF6 mixtures which shows a higher fluorine concentration in the surface film a leading to a better oxidation resistance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Early Surface Films Dynamically Formed on Molten AZ91D and AM60B Alloys Under Different Atmospheres: A Comparative Study\",\"authors\":\"A. Mirak\",\"doi\":\"10.22068/IJMSE.1570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the early stages of the surface oxidation and fluoridation of liquid AZ91D and AM60B alloys under ultra-high purity (UHP) argon, dry air, and air mixed with two different protective fluorine-bearing gases were studied. The chemical composition, morphology and thickness of the surface films formed inside the trapped bubbles were characterized by SEM equipped with EDS analysis. It is found that the molten AM60B alloy is more sensitive to impurities under UHP argon gas than AZ91D alloy. Under dry air atmosphere, the entire surface of molten AZ91D alloy is covered with an oxide layer and thinner thickness than the surface film formed on AM60B alloy which has rough surface exhibiting granular growth in later stages of oxidation. The EDS analysis shows that the film chemistry is mainly composed of Mg, Al and O elements. Under fluorine-bearing gas/air mixtures with either SF6 or HFC-R134a at 3.5%vol., a fresh surface film formed with a flat and dense morphology with a uniform thickness consisting of Mg, F, Al and O elements. It is observed that there is a lower O:F intensity ratio in the surface film formed on the molten AZ91D alloy under 1,1,1,2-tetra-fluoroethane (HFC-R134a) mixed with dry air compared to the AM60B alloy under both air/ R134a and air/SF6 mixtures which shows a higher fluorine concentration in the surface film a leading to a better oxidation resistance.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.1570\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.1570","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of the Early Surface Films Dynamically Formed on Molten AZ91D and AM60B Alloys Under Different Atmospheres: A Comparative Study
In the present study, the early stages of the surface oxidation and fluoridation of liquid AZ91D and AM60B alloys under ultra-high purity (UHP) argon, dry air, and air mixed with two different protective fluorine-bearing gases were studied. The chemical composition, morphology and thickness of the surface films formed inside the trapped bubbles were characterized by SEM equipped with EDS analysis. It is found that the molten AM60B alloy is more sensitive to impurities under UHP argon gas than AZ91D alloy. Under dry air atmosphere, the entire surface of molten AZ91D alloy is covered with an oxide layer and thinner thickness than the surface film formed on AM60B alloy which has rough surface exhibiting granular growth in later stages of oxidation. The EDS analysis shows that the film chemistry is mainly composed of Mg, Al and O elements. Under fluorine-bearing gas/air mixtures with either SF6 or HFC-R134a at 3.5%vol., a fresh surface film formed with a flat and dense morphology with a uniform thickness consisting of Mg, F, Al and O elements. It is observed that there is a lower O:F intensity ratio in the surface film formed on the molten AZ91D alloy under 1,1,1,2-tetra-fluoroethane (HFC-R134a) mixed with dry air compared to the AM60B alloy under both air/ R134a and air/SF6 mixtures which shows a higher fluorine concentration in the surface film a leading to a better oxidation resistance.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.