基于广告欺诈检测的广告主管理决策支持系统

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marcin Gabryel, Magdalena M. Scherer, Ł. Sułkowski, Robertas Damaševičius
{"title":"基于广告欺诈检测的广告主管理决策支持系统","authors":"Marcin Gabryel, Magdalena M. Scherer, Ł. Sułkowski, Robertas Damaševičius","doi":"10.2478/jaiscr-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot encoding for categorical data. The data of mouse clicks come from seven large retail stores and the data of lead classification from three financial institutions. The data are collected by a JavaScript code embedded into HTML pages. The three proposed models achieved relatively high accuracy in detecting artificially generated traffic.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"11 1","pages":"331 - 339"},"PeriodicalIF":3.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Decision Making Support System for Managing Advertisers By Ad Fraud Detection\",\"authors\":\"Marcin Gabryel, Magdalena M. Scherer, Ł. Sułkowski, Robertas Damaševičius\",\"doi\":\"10.2478/jaiscr-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot encoding for categorical data. The data of mouse clicks come from seven large retail stores and the data of lead classification from three financial institutions. The data are collected by a JavaScript code embedded into HTML pages. The three proposed models achieved relatively high accuracy in detecting artificially generated traffic.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":\"11 1\",\"pages\":\"331 - 339\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2478/jaiscr-2021-0020\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2021-0020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

摘要

摘要高效的潜在客户管理可以大大增强在线渠道营销计划。在本文中,我们将网站流量分为人类流量和机器人流量。我们使用带有嵌入层的前馈神经网络。此外,我们对分类数据使用一个热编码。鼠标点击数据来自7家大型零售店,线索分类数据来自3家金融机构。数据是通过嵌入HTML页面的JavaScript代码收集的。所提出的三个模型在检测人工生成的流量方面实现了相对较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision Making Support System for Managing Advertisers By Ad Fraud Detection
Abstract Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot encoding for categorical data. The data of mouse clicks come from seven large retail stores and the data of lead classification from three financial institutions. The data are collected by a JavaScript code embedded into HTML pages. The three proposed models achieved relatively high accuracy in detecting artificially generated traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信