时变非厄米哈密顿算子的演化算子

Q2 Physics and Astronomy
B. Bagchi
{"title":"时变非厄米哈密顿算子的演化算子","authors":"B. Bagchi","doi":"10.31526/LHEP.3.2018.02","DOIUrl":null,"url":null,"abstract":"The evolution operator \\(U(t)\\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \\(U(t)\\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.","PeriodicalId":36085,"journal":{"name":"Letters in High Energy Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evolution operator for time-dependent non-Hermitian Hami ltonians\",\"authors\":\"B. Bagchi\",\"doi\":\"10.31526/LHEP.3.2018.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution operator \\\\(U(t)\\\\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \\\\(U(t)\\\\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.\",\"PeriodicalId\":36085,\"journal\":{\"name\":\"Letters in High Energy Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31526/LHEP.3.2018.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31526/LHEP.3.2018.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7

摘要

文献中对一个与时间无关的宇称时间对称系统的演化算子(U(t))进行了深入的研究。然而,对于非埃尔米特含时系统,进化算子的闭式表达式是不可用的。在本文中,我们使用了a.R.P.Rau最初开发的一个程序[Phys.Rev.Lett,814785-4789(1998)],在存在时间依赖的外部ELD时,推导指数算子乘积形式的Liuville-Bloch方程的解,用于在相互作用图中评估\(U(t)\),其中对应的哈密顿量是时间依赖的并且通常是非埃尔米特的。这相当于整个方案在处理非线性Riccati方程方面的变换,该方程的解的存在取决于某个伴随的可积条件的满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution operator for time-dependent non-Hermitian Hami ltonians
The evolution operator \(U(t)\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \(U(t)\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in High Energy Physics
Letters in High Energy Physics Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.20
自引率
0.00%
发文量
4
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信