加兰他敏栓系水凝胶作为链脲佐菌素诱导的Wistar大鼠阿尔茨海默病的新治疗靶点

Q2 Agricultural and Biological Sciences
Manickam Rajkumar , Murugesan Sakthivel , Kottaisamy Senthilkumar , Ramasundaram Thangaraj , Soundarapandian Kannan
{"title":"加兰他敏栓系水凝胶作为链脲佐菌素诱导的Wistar大鼠阿尔茨海默病的新治疗靶点","authors":"Manickam Rajkumar ,&nbsp;Murugesan Sakthivel ,&nbsp;Kottaisamy Senthilkumar ,&nbsp;Ramasundaram Thangaraj ,&nbsp;Soundarapandian Kannan","doi":"10.1016/j.crphar.2022.100100","DOIUrl":null,"url":null,"abstract":"<div><p>Amyloid-β (Aβ) plaque formation, neuronal cell death, and cognitive impairment are the unique symptoms of Alzheimer's disease (AD). No single step remedy is available to treat AD, so the present study aimed to improve the drugability and minimize the abnormal behavioral and biochemical activities in streptozotocin (STZ) induced AD experimental Wistar rats. In particular, we explored the utilization of methacrylated gelatin (GelMA), which is a biopolymeric hydrogel that mimics the natural tissue environment. The synthesized biopolymeric gel contained the drug galantamine (Gal). Investigations were conducted to evaluate the behavioral activities of STZ-induced AD experimental rats under STZ ​+ ​GelMA ​+ ​Gal treatment. The experimental groups comprised the control and STZ, STZ ​+ ​GelMA, STZ ​+ ​Gal, and STZ ​+ ​GelMA ​+ ​Gal (10 ​mg/kg) treated rats. Intracerebroventricular STZ ensures cognitive decline in terms of an increase in the escape latency period, with a decrease in the spontaneous alteration of behavioral activities. Our results indicated decrease Aβ aggregation in the hydrogel-based drug treatment group and significant decreases in the levels of acetylcholinesterase and lipid peroxidation (<em>p</em> ​&lt; ​0.001). In addition, the glutathione and superoxide dismutase activities appeared to be improved in the STZ ​+ ​GelMA ​+ ​Gal group compared with the other treatment groups. Furthermore, histopathological and immunohistochemical experiments showed that the GelMA ​+ ​Gal treated AD rats exhibited significantly improved behavioral and biochemical activities compared with the STZ treated AD rats. Therefore, STZ ​+ ​GelMA ​+ ​Gal administration from the pre-plaque stage may have a potential clinical application in the prevention of AD. Thus, we conclude that hydrogel-based Gal drugs are efficient at decreasing Aβ aggregation and improving the neuroinflammatory process, antioxidant activity, and neuronal growth.</p></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"3 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590257122000207/pdfft?md5=df1ec666f8a8dc260e899bccd6ff055a&pid=1-s2.0-S2590257122000207-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Galantamine tethered hydrogel as a novel therapeutic target for streptozotocin-induced Alzheimer's disease in Wistar rats\",\"authors\":\"Manickam Rajkumar ,&nbsp;Murugesan Sakthivel ,&nbsp;Kottaisamy Senthilkumar ,&nbsp;Ramasundaram Thangaraj ,&nbsp;Soundarapandian Kannan\",\"doi\":\"10.1016/j.crphar.2022.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amyloid-β (Aβ) plaque formation, neuronal cell death, and cognitive impairment are the unique symptoms of Alzheimer's disease (AD). No single step remedy is available to treat AD, so the present study aimed to improve the drugability and minimize the abnormal behavioral and biochemical activities in streptozotocin (STZ) induced AD experimental Wistar rats. In particular, we explored the utilization of methacrylated gelatin (GelMA), which is a biopolymeric hydrogel that mimics the natural tissue environment. The synthesized biopolymeric gel contained the drug galantamine (Gal). Investigations were conducted to evaluate the behavioral activities of STZ-induced AD experimental rats under STZ ​+ ​GelMA ​+ ​Gal treatment. The experimental groups comprised the control and STZ, STZ ​+ ​GelMA, STZ ​+ ​Gal, and STZ ​+ ​GelMA ​+ ​Gal (10 ​mg/kg) treated rats. Intracerebroventricular STZ ensures cognitive decline in terms of an increase in the escape latency period, with a decrease in the spontaneous alteration of behavioral activities. Our results indicated decrease Aβ aggregation in the hydrogel-based drug treatment group and significant decreases in the levels of acetylcholinesterase and lipid peroxidation (<em>p</em> ​&lt; ​0.001). In addition, the glutathione and superoxide dismutase activities appeared to be improved in the STZ ​+ ​GelMA ​+ ​Gal group compared with the other treatment groups. Furthermore, histopathological and immunohistochemical experiments showed that the GelMA ​+ ​Gal treated AD rats exhibited significantly improved behavioral and biochemical activities compared with the STZ treated AD rats. Therefore, STZ ​+ ​GelMA ​+ ​Gal administration from the pre-plaque stage may have a potential clinical application in the prevention of AD. Thus, we conclude that hydrogel-based Gal drugs are efficient at decreasing Aβ aggregation and improving the neuroinflammatory process, antioxidant activity, and neuronal growth.</p></div>\",\"PeriodicalId\":10877,\"journal\":{\"name\":\"Current Research in Pharmacology and Drug Discovery\",\"volume\":\"3 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590257122000207/pdfft?md5=df1ec666f8a8dc260e899bccd6ff055a&pid=1-s2.0-S2590257122000207-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Pharmacology and Drug Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590257122000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmacology and Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590257122000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

摘要

淀粉样蛋白-β (Aβ)斑块形成、神经元细胞死亡和认知障碍是阿尔茨海默病(AD)的独特症状。由于目前尚无治疗AD的单步药物,因此本研究旨在提高STZ诱导的AD实验Wistar大鼠的可药性,并尽量减少其行为和生化活性的异常。特别是,我们探索了甲基丙烯酸明胶(GelMA)的利用,这是一种模拟自然组织环境的生物聚合物水凝胶。合成的生物聚合物凝胶含有药物加兰他明(Gal)。观察STZ + GelMA + Gal处理下STZ诱导AD实验大鼠的行为活动。试验组为对照组和STZ、STZ + GelMA、STZ + Gal、STZ + GelMA + Gal (10 mg/kg)处理大鼠。脑室内STZ通过增加逃避潜伏期确保认知能力下降,同时减少行为活动的自发改变。我们的研究结果表明,水凝胶药物治疗组Aβ聚集减少,乙酰胆碱酯酶和脂质过氧化水平显著降低(p <0.001)。此外,与其他处理组相比,STZ + GelMA + Gal组的谷胱甘肽和超氧化物歧化酶活性明显提高。组织病理学和免疫组织化学实验表明,与STZ处理的AD大鼠相比,GelMA + Gal处理的AD大鼠表现出明显改善的行为和生化活性。因此,从斑块前阶段开始给药STZ + GelMA + Gal可能在预防AD方面具有潜在的临床应用价值。因此,我们得出结论,基于水凝胶的半乳糖药物可有效降低Aβ聚集,改善神经炎症过程,抗氧化活性和神经元生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Galantamine tethered hydrogel as a novel therapeutic target for streptozotocin-induced Alzheimer's disease in Wistar rats

Galantamine tethered hydrogel as a novel therapeutic target for streptozotocin-induced Alzheimer's disease in Wistar rats

Amyloid-β (Aβ) plaque formation, neuronal cell death, and cognitive impairment are the unique symptoms of Alzheimer's disease (AD). No single step remedy is available to treat AD, so the present study aimed to improve the drugability and minimize the abnormal behavioral and biochemical activities in streptozotocin (STZ) induced AD experimental Wistar rats. In particular, we explored the utilization of methacrylated gelatin (GelMA), which is a biopolymeric hydrogel that mimics the natural tissue environment. The synthesized biopolymeric gel contained the drug galantamine (Gal). Investigations were conducted to evaluate the behavioral activities of STZ-induced AD experimental rats under STZ ​+ ​GelMA ​+ ​Gal treatment. The experimental groups comprised the control and STZ, STZ ​+ ​GelMA, STZ ​+ ​Gal, and STZ ​+ ​GelMA ​+ ​Gal (10 ​mg/kg) treated rats. Intracerebroventricular STZ ensures cognitive decline in terms of an increase in the escape latency period, with a decrease in the spontaneous alteration of behavioral activities. Our results indicated decrease Aβ aggregation in the hydrogel-based drug treatment group and significant decreases in the levels of acetylcholinesterase and lipid peroxidation (p ​< ​0.001). In addition, the glutathione and superoxide dismutase activities appeared to be improved in the STZ ​+ ​GelMA ​+ ​Gal group compared with the other treatment groups. Furthermore, histopathological and immunohistochemical experiments showed that the GelMA ​+ ​Gal treated AD rats exhibited significantly improved behavioral and biochemical activities compared with the STZ treated AD rats. Therefore, STZ ​+ ​GelMA ​+ ​Gal administration from the pre-plaque stage may have a potential clinical application in the prevention of AD. Thus, we conclude that hydrogel-based Gal drugs are efficient at decreasing Aβ aggregation and improving the neuroinflammatory process, antioxidant activity, and neuronal growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Pharmacology and Drug Discovery
Current Research in Pharmacology and Drug Discovery Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
6.40
自引率
0.00%
发文量
65
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信